Comparison of numerical methods for the problem arising in the gyrotron theory

    J. Cepitis Info
    H. Kalis Info
    A. Reinfelds Info
DOI: https://doi.org/10.3846/13926292.2005.9637267

Abstract

There are considered some aspects for numerical solving of problem with Robin's boundary conditions arising in the gyrotron theory. The single mode case is carefully investigated. The obtained observations make possible to offer the suitable strategy for the numerical solving of the problem for general system of nonstationary gyrotron oscillations.

Skaitinių metodų girotrono teorijos uždaviniuose palyginimas

Straipsnyje nagrinėjame girotrono teorijos uždavinių su Robino kraštine sąlyga kai kurie skaitinio sprendimo metodų aspektai. Atidžiai nagrinėjamas vienos modos atvėjis ir gauti pastebėjimai leidžia sudaryti tinkamą skaitinio šio uždavinio sprendimo strategiją bendrajai girotrono lygčių sistemai, aprašančiai jo nestacionarius virpesius.

First Published Online: 14 Oct 2010

Keywords:

finite‐difference schemes, gyrotrons, method of lines, Robin's boundary conditions

How to Cite

Cepitis, J., Kalis, H., & Reinfelds, A. (2005). Comparison of numerical methods for the problem arising in the gyrotron theory. Mathematical Modelling and Analysis, 10(1), 19-30. https://doi.org/10.3846/13926292.2005.9637267

Share

Published in Issue
March 31, 2005
Abstract Views
435

View article in other formats

CrossMark check

CrossMark logo

Published

2005-03-31

Issue

Section

Articles

How to Cite

Cepitis, J., Kalis, H., & Reinfelds, A. (2005). Comparison of numerical methods for the problem arising in the gyrotron theory. Mathematical Modelling and Analysis, 10(1), 19-30. https://doi.org/10.3846/13926292.2005.9637267

Share