H2 Optimal Model Reduction of Coupled Systems on the Grassmann Manifold
DOI: https://doi.org/10.3846/13926292.2017.1381863Abstract
In this paper, we focus on the H2 optimal model reduction methods of coupled systems and ordinary differential equation (ODE) systems. First, the ε-embedding technique and a stable representation of an unstable differential algebraic equation (DAE) system are introduced. Next, some properties of manifolds are reviewed and the H2 norm of ODE systems is discussed. Then, the H2 optimal model reduction method of ODE systems on the Grassmann manifold is explored and generalized to coupled systems. Finally, numerical examples demonstrate the approximation accuracy of our proposed algorithms.
Keywords:
model reduction, H2 optimality, coupled systems, manifoldsHow to Cite
Share
License
Copyright (c) 2017 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2017 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.