On Certain Mathematical Problems in Two-Photon Laser Scanning Microscopy
DOI: https://doi.org/10.3846/13926292.2017.1336123Abstract
In an earlier paper, we derived the distribution of the number of photons detected in two-photon laser scanning microscopy when the counter has a dead period. We assumed a Poisson number of emissions, exponential waiting times, and an infinite time horizon, and used an equivalent inhomogeneous Poisson process formulation. We then used that result to improve image quality as measured by the signal-to-noise ratio. Here, we extend that study in two directions. First, we treat the finite-horizon case to assess the accuracy of the simpler infinite-horizon approximation. Second, we use a direct approach by conditioning on the Poisson count for the infinite-horizon case to derive several polynomial identities.
Keywords:
dead period, finite horizon, inhomogeneous Poisson process, polynomial identities, waiting timeHow to Cite
Share
License
Copyright (c) 2017 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2017 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.