Cordial Volterra Integral Equations and Singular Fractional Integro-Differential Equations in Spaces of Analytic Functions∗
Abstract
We study general cordial Volterra integral equations of the second kind and certain singular fractional integro-differential equation in spaces of analytic functions. We characterize properties of the cordial Volterra integral operator in these spaces, including compactness and describe its spectrum. This enables us to obtain conditions under which these equations have a unique analytic solution. We also consider approximate solution of these equations and prove exponential convergence of approximate solutions to the exact solution.
Keywords:
cordial integral equation, singular fractional differential equation, analytic solution, exponential convergence, collocation methodHow to Cite
Share
License
Copyright (c) 2017 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2017 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.