Probabilistic Approach to Characterize Quantitative Uncertainty in Numerical Approximations

    Joel Chaskalovic Info
    Franck Assous Info

Abstract

This paper proposes a statistical and probabilistic approach to compare and analyze the errors of two different approximation methods. We introduce the principle of numerical uncertainty in such a process, and we illustrate it by considering the discretization difference between two different approximation orders, e.g., first and second order Lagrangian finite element. Then, we derive a probabilistic approach to define and to qualify equivalent results. We illustrate our approach on a model problem on which we built the two above mentioned finite element approximations. We consider some variables as physical “predictors”, and we characterize how they influence the odds of the approximation methods to be locally “same order accurate”.

Keywords:

probabilistic models, data mining, quantitative uncertainty, finite elements, Big Data

How to Cite

Chaskalovic, J., & Assous, F. (2017). Probabilistic Approach to Characterize Quantitative Uncertainty in Numerical Approximations. Mathematical Modelling and Analysis, 22(1), 106-120. https://doi.org/10.3846/13926292.2017.1272499

Share

Published in Issue
January 11, 2017
Abstract Views
626

View article in other formats

CrossMark check

CrossMark logo

Published

2017-01-11

Issue

Section

Articles

How to Cite

Chaskalovic, J., & Assous, F. (2017). Probabilistic Approach to Characterize Quantitative Uncertainty in Numerical Approximations. Mathematical Modelling and Analysis, 22(1), 106-120. https://doi.org/10.3846/13926292.2017.1272499

Share