Study of Solutions to a Fourth Order Parabolic Equation∗
Abstract
This paper studies a fourth-order parabolic equation ut + ε(unuxxx)x − δ|uxx|muxx = 0 with the boundary conditions uxx = 0, u = l and the initial condition u(x, 0) = u0(x). The existence of solutions is obtained from the semidiscretization method. When the initial function is close to a constant steady state solution, the uniqueness of the bounded solutions is obtained. Finally, by the iteration technique from its semi-discrete problem, the solution exponentially converges to a constant steady state solution as the time tends to infinity.
Keywords:
fourth-order parabolic, existence, uniqueness, semidiscretization, large-time behaviorHow to Cite
Share
License
Copyright (c) 2016 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2016 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.