On Strong Convergence of Halpern’s Method for Quasi-Nonexpansive Mappings in Hilbert Spaces
Abstract
In this paper, we introduce a Halpern’s type method to approximate common fixed points of a nonexpansive mapping T and a strongly quasi-nonexpansive mappings S, defined in a Hilbert space, such that I − S is demiclosed at 0. The result shows as the same algorithm converges to different points, depending on the assumptions of the coefficients. Moreover, a numerical example of our iterative scheme is given.
Keywords:
approximation algorithm, fixed point, variational inequalityHow to Cite
Share
License
Copyright (c) 2016 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2016 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.