Improved Lipschitz bounds with the first norm for function values over multidimensional simplex
Abstract
A branch and bound algorithm for global optimization is proposed, where the maximum of an upper bounding function based on Lipschitz condition and the first norm over a simplex is used as the upper bound of function. In this case the graph of bounding function is intersection of n‐dimensional pyramids and its maximum point is found solving a system of linear equations. The efficiency of the proposed global optimization algorithm is evaluated experimentally.
First Published Online: 14 Oct 2010
Keywords:
global optimization, branch and bound algorithms, Lipschitz optimization, the first normHow to Cite
Share
License
Copyright (c) 2008 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2008 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.