A finite difference method for piecewise deterministic processes with memory. II
Abstract
We deal with the numerical scheme for the Liouville Master Equation (LME) of a kind of Piecewise Deterministic Processes (PDP) with memory, analysed in [2]. The LME is a linear system of hyperbolic PDEs, written in non‐conservative form, with non‐local boundary conditions. The solutions of that equation are time dependent marginal distribution functions whose sum satisfies the total probability conservation law. In [2] the convergence of the numerical scheme, based on the Courant‐Isaacson‐Rees jointly with a direct quadrature, has been proved under a Courant‐Friedrichs‐Lewy like (CFL) condition. Here we show that the numerical solution is monotonic under a similar CFL condition. Moreover, we evaluate the conservativity of the total probability for the calculated solution. Finally, an implementation of a parallel algorithm by using the MPI library is described and the results of some performance tests are presented.
First published online: 14 Oct 2010
Keywords:
Monotonicity, upwind, non‐local boundary conditions, memory, semi‐Markov, piecewise deterministicHow to Cite
Share
License
Copyright (c) 2009 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2009 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.