Dual equation and inverse problem for an indefinite Sturm–Liouville problem with m turning points of even order
DOI: https://doi.org/10.3846/13926292.2012.732972Abstract
In this paper the differential equation y″ + (ρ 2 φ 2 (x) –q(x))y = 0 is considered on a finite interval I, say I = [0, 1], where q is a positive sufficiently smooth function and ρ 2 is a real parameter. Also, [0, 1] contains a finite number of zeros of φ 2 , the so called turning points, 0 < x 1 < x 2 < … < x m < 1. First we obtain the infinite product representation of the solution. The product representation, satisfies in the original equation. As a result the associated dual equation is derived and then we proceed with the solution of the inverse problem.
Keywords:
turning point, Sturm–Liouville problem, indefinite problem, dual equation, inverse problemHow to Cite
Share
License
Copyright (c) 2012 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2012 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.