Strictly convergent algorithm for an elliptic equation with nonlocal and nonlinear boundary conditions
Abstract
The paper describes a formally strictly convergent algorithm for solving a class of elliptic problems with nonlinear and nonlocal boundary conditions, which arise in modeling of the steady-state conductive-radiative heat transfer processes. The proposed algorithm has two levels of iterations, where inner iterations by means of the damped Newton method solve an appropriate elliptic problem with nonlinear, but local boundary conditions, and outer iterations deal with nonlocal terms in boundary conditions.
Keywords:
conductive-radiative heat transfer, elliptic equation, Newton methodHow to Cite
Share
License
Copyright (c) 2012 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2012 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.