A numerical method for solving two-dimensional nonlinear parabolic problems based on a preconditioning operator

DOI: https://doi.org/10.3846/mma.2020.4310

Abstract

‎This article considers a nonlinear system of elliptic problems, which is obtained by discretizing the time variable of a two-dimensional nonlinear parabolic problem. Since the system consists of ill-conditioned problems, therefore a stabilized, mesh-free method is proposed. The method is based on coupling the preconditioned Sobolev space gradient method and WEB-spline finite element method with Helmholtz operator as a preconditioner. The convergence and error analysis of the method are given. Finally, a numerical example is solved by this preconditioner to show the efficiency and accuracy of the proposed methods.

Keywords:

‎Sobolev space gradient method, WEB-spline finite element method, preconditioning operator, nonlinear parabolic problems

How to Cite

Salehi Shayegan, A. H., Zakeri, A., & Hosseini, S. M. (2020). A numerical method for solving two-dimensional nonlinear parabolic problems based on a preconditioning operator. Mathematical Modelling and Analysis, 25(4), 531-545. https://doi.org/10.3846/mma.2020.4310

Share

Published in Issue
October 13, 2020
Abstract Views
855

References

O. Axelsson, I. Faragó and J. Karátson. Sobolev space preconditioning for Newton’s method using domain decomposition. Numerical Linear Algebra with Applications, 9(6-7):585–598, 2002. https://doi.org/10.1002/nla.293"> https://doi.org/10.1002/nla.293

O. Axelsson and J. Karátson. Double sobolev gradient preconditioning for nonlinear elliptic problems. Numerical Methods for Partial Differential Equations, 23(5):1018–1036, 2007. https://doi.org/10.1002/num.20207"> https://doi.org/10.1002/num.20207

I. Faragó and J. Karátson. The gradient finite element method for elliptic problems. Computers & Mathematics with Applications, 42(8):1043–1053, 2001. https://doi.org/10.1016/S0898-1221(01)00220-6"> https://doi.org/10.1016/S0898-1221(01)00220-6

I. Faragó and J. Karátson. Numerical Solution of Nonliner Elliptic Problems via Preconditioning Operators: theory and Applications. Advances in Computation, 11, Nova Science Publisher, New York, 2002.

I. Faragó, J. Karátson and S. Korotov. Discrete nonnegativity for nonlinear cooperative parabolic PDE systems with non-monotone coupling. Mathematics and Computers in Simulation, 139:37–53, 2017. https://doi.org/10.1016/j.matcom.2016.03.015"> https://doi.org/10.1016/j.matcom.2016.03.015

K. Höllig. Finite Element Methods with B-splines. Society for Industrial and Applied Mathematics, Philadelphia, 2003. https://doi.org/10.1137/1.9780898717532"> https://doi.org/10.1137/1.9780898717532

K. Höllig and U. Reif. Nonuniform web-splines. Computer Aided Geometric Design, 20(5):277–294, 2003. https://doi.org/10.1016/S0167-8396(03)00045-1"> https://doi.org/10.1016/S0167-8396(03)00045-1

K. Höllig, U. Reif and J. Wipper. Weighted extended B-spline approximation of Dirichlet problems. SIAM Journal on Numerical Analysis, 39(2):442–462, 2001. https://doi.org/10.1137/S0036142900373208"> https://doi.org/10.1137/S0036142900373208

K. Höllig, U. Reif and J. Wipper. B-spline Approximation of Neumann Problems. Universitat Stuttgart, 2001-2.

J. Karátson and I. Faragó. Preconditioning operators and Sobolev gradients for nonlinear elliptic problems. Computers & Mathematics with Applications, 50(7):1077–1092, 2005. https://doi.org/10.1016/j.camwa.2005.08.010"> https://doi.org/10.1016/j.camwa.2005.08.010

V.V.K. Srinivas Kumar, B.V. Ratish Kumar and P.C. Das. Weighted extended B-spline method for the approximation of stationary Stokes problem. Journal of Computational and Applied Mathematics, 186(2):335–348, 2006. https://doi.org/10.1016/j.cam.2005.02.008"> https://doi.org/10.1016/j.cam.2005.02.008

T. Kurics. Equivalent operator preconditioning for elliptic problems with nonhomogeneous mixed boundary conditions. Journal of Computational and Applied Mathematics, 235(2):437–449, 2010. https://doi.org/10.1016/j.cam.2010.05.047"> https://doi.org/10.1016/j.cam.2010.05.047

A. Zakeri and A.H. Salehi Shayegan. Gradient WEB-spline finite element method for solving two-dimensional quasilinear elliptic problems. Applied Mathematical Modelling, 38(2):775–783, 2014. https://doi.org/10.1016/j.apm.2013.06.018"> https://doi.org/10.1016/j.apm.2013.06.018

View article in other formats

CrossMark check

CrossMark logo

Published

2020-10-13

Issue

Section

Articles

How to Cite

Salehi Shayegan, A. H., Zakeri, A., & Hosseini, S. M. (2020). A numerical method for solving two-dimensional nonlinear parabolic problems based on a preconditioning operator. Mathematical Modelling and Analysis, 25(4), 531-545. https://doi.org/10.3846/mma.2020.4310

Share