Numerical simulation of charged fullerene spectrum
Abstract
The mathematical model of the ground state electron spectrum of a charged fullerene is constructed on the basis of the potential of a charged sphere and the spherically symmetric potential of a neutral fullerene, derived in a single-electron self-consistent field model approach. The electron spectrum is defined as the solution of the spectral problem for the one-dimensional Schrödinger equation. For the numerical solution of the spectral problem, piecewise-linear finite elements are used. The computational algorithm was tested on the analytical solution of the problem of the spectrum of the hydrogen atom. For solution of matrix spectral problems, a free library for solving spectral problems of SLEPc is used. The results of calculations of the electron spectrum of a charged fullerene C60 are presented.
Keywords:
fullerene, Schrödinger equation, spectral problem, finite element methodHow to Cite
Share
License
Copyright (c) 2019 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
M. Y. Amusia, A. S. Baltenkov and B. G. Krakov. Photodetachment of negative C−60ions. Physics Letters A, 243(1–2) : 99–105,1998. https://doi.org/10.1016/S0375-9601(98)00158-3
R. V. Arutyunyan and A. V. Osadchy. The systems of volume-localized electron quantum levels of charged fullerenes. Journal of Nanomaterials, 2018:7526869, 2018. https://doi.org/10.1155/2018/7526869
R. V. Arutyunyan, P. N. Vabishchevich and Y. N. Obukhov. Existence of a system of discrete volume-localized quantum levels for charged fullerenes. Physical Review B, 98(10):155427, 2018. https://doi.org/10.1103/PhysRevB.98.155427
A. S. Baltenkov, S. T. Manson and A. Z. Msezane. Jellium model potentials forthe C60 molecule and the photoionization of endohedral atoms, A@C60. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(18):185103, 2015. https://doi.org/10.1088/0953-4075/48/18/185103
A. K. Belyaev, A. S. Tiukanov, A. I. Toropkin, V. K. Ivanov, R. G. Polozkovand A. V. Solov’yov. Photoabsorption of the fullerene C60 and its positiveions. Physica Scripta, 80(4):048121, 2009. https://doi.org/10.1088/0031-8949/80/04/048121
V. R. Bhardwaj, P. B. Corkum and D. M. Rayner. Internal laser-induced dipoleforce at work in C60 molecule. Physical Review Letters, 91(20):203004, 2003. https://doi.org/10.1103/PhysRevLett.91.203004
A. Brenac, F. Chandezon, H. Lebius, A. Pesnelle, S. Tomita and B. A. Huber. Multifragmentation of highly charged C60 ions: Chargestates and fragment energies. Physica Scripta, 1999(T80B):195,1999. https://doi.org/10.1238/Physica.Topical.080a00195
S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Springer, New York, 2008. ISBN 9780387759333. https://doi.org/10.1007/978-0-387-75934-0
E. Campbell. Fullerene collision reactions. Kluwer Academic, Dordrecht London,2003. ISBN 9781402025242.
J. P. Connerade, V. K. Dolmatov, P. A. Lakshmi and Manson S. T. Electron structure of endohedrally confined atoms: atomic hydrogen in an attractive shell. Journal of Physics B: Atomic, Molecular and Optical Physics, 32(10):L239–L245, 1999. https://doi.org/10.1088/0953-4075/32/10/101
J. P. Connerade, V.K. Dolmatov and Manson S.T.A unique situation foran endohedral metallofullerene. Journal of Physics B: Atomic, Molecularand Optical Physics, 32(14):L395–L403, 1999. https://doi.org/10.1088/0953-4075/32/14/108
S. Dıaz-Tendero, M. Alcamı and F. Martın. Structure and electronic properties of highly charged C60 and C58 fullerenes. The Journal of Chemical Physics, 123(18):184306, 2005.https://doi.org/10.1063/1.2104467
Z. Felfli and A. Z. Msezane. Simple method for determining binding energies of fullerene negative ions. European Physical Journal B,72:78, 2018. https://doi.org/10.1140/epjd/e2018-80420-9
V. Hernandez, J. E. Roman and V. Vidal. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Transactions on Mathematical Soft-ware (TOMS),31(3):351–362, 2005. https://doi.org/10.1145/1089014.1089019
V. K. Ivanov, G. Y. Kashenock, R. G. Polozkov and A. V. Solov’yov. Photoionization cross sections of the fullerenes C20 and C60 calculated in a simple spherical model. Journal of Physics B: Atomic, Molecular and Optical Physics, 34(21):L669–L677, 2001. https://doi.org/10.1088/0953-4075/34/21/101
W. Jaskólski. Confined many-electron systems. Physics Reports, 271(1):1–66,1996. https://doi.org/10.1016/0370-1573(95)00070-4
J. Jensen, H. Zettergren, H. T. Schmidt, H. Cederquist, S. Tomita, S. B. Nielsen, J. Rangama, P. Hvelplund, B. Manil and B. A. Huber. Ionization of C70 and C60 molecules by slow highly charged ions: A comparison. Physical Review A, 69:053203, 2004. https://doi.org/10.1103/PhysRevA.69.053203
W. Krätschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman. Solid C60 : a new form of carbon. Nature, 347(6291):354–358, 1990. https://doi.org/10.1038/347354a0
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley. C60: Buckminsterfullerene. Nature, 318(6042):162–163, 1985. https://doi.org/10.1038/318162a0
L. D. Landau and E. M. Lifshitz. Quantum Mechanics : Non-Relativistic Theory. Elsevier Science, Burlington, 1977. ISBN 9781483149127.
F. Langa. Fullerenes: principles and applications. Royal Society of Chemistry, Cambridge, U.K, 2011. ISBN 9781849732956.
V. Ledoux and M. Van Daele. Matslise 2.0: A Matlab toolbox for Sturm-Liouville computations. ACM Transactions on Mathematical Software (TOMS),42(4):29:1–29:18, June 2016. https://doi.org/10.1145/2839299
A. Logg, K. A. Mardal and G. Wells. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Springer, Berlin NewYork, 2012. ISBN 9783642230981. https://doi.org/10.1007/978-3-642-23099-8
L. L. Lohr and M. Blinder. Electron photodetachment from a Dirac bubble potential. A model for the fullerene negative ionCC−60. Chemical Physics Letters, 198(1–2):100–108, 1992. https://doi.org/10.1016/0009-2614(92)90055-R
M. E. Madjet, H. S. Chakraborty, J. M. Rost and S. T. Manson. Photoionization of C60: a model study. Journal of Physics B: Atomic, Molecular and Optical Physics, 41(10):105101, 2008. https://doi.org/10.1088/0953-4075/41/10/105101
R. G. Polozkov, V. K. Ivanov and A. V. Solov’yov. Photoionization of thefullerene ionC+60. Journal of Physics B: Atomic, Molecular and Optical Physics, 38(24):4341–4348, 2005. https://doi.org/10.1088/0953-4075/38/24/001
J. Pryce. Numerical solution of Sturm-Liouville problems. Clarendon Press, Oxford England New York, 1993. ISBN 0198534159.
J. D. Pryce. A test package for Sturm-Liouville solvers. ACM Transactionson Mathematical Software,25(1):21–57,1999. https://doi.org/10.1145/305658.287651
M. J. Puska and R.M. Nieminen. Photoabsorption of atoms inside C60. PhysicalReview A, 47:1181, 1993. https://doi.org/10.1103/PhysRevA.47.1181
A. Rüdel, R. Hentges, U. Becker, H. S. Chakraborty, M. E. Madjet and J. M. Rost. Imaging delocalized electron clouds: Photoionization of C60 in Fourier reciprocal space. Physical Review Letters, 89:125503, 2002. https://doi.org/10.1103/PhysRevLett.89.125503
Y. Saad. Numerical methods for large eigenvalue problems. Society for Industrial and Applied Mathematics, Philadelphia, 2011. ISBN 9781611970722. https://doi.org/10.1137/1.9781611970739
R. Sahnoun, K. Nakai, Y. Sato, H. Kono, Y. Fujimura and M. Tanaka. Theo-retical investigation of the stability of highly chargedC60molecules producedwith intense near-infrared laser pulses.The Journal of Chemical Physics,125(18):184306, 2006. https://doi.org/10.1063/1.2371109
S. Saito, A. Oshiyama and Miyamoto Y. Electronic structures of fullerenes and fullerides. Computational Approaches in Condensed-Matter Physics, pp. 22–26,1992. https://doi.org/10.1007/978-3-642-84821-64
G. Sánchez, S. Dıaz-Tendero, M. Alcamı and F. Martın. Size dependence ofionization potentials and dissociation energies for neutral and singly-charged Cnfullerenes (n= 40−70). Chemical Physics Letters, 416(1–3):14–17, 2005. https://doi.org/10.1016/j.cplett.2005.09.033
K. Sattler. Handbook of nanophysics. CRC Press, Boca Raton, 2011. ISBN9781420075540.
G. Schrange-Kashenock. 4d→4fresonance in photoabsorption of ceriumion Ce3+ and endohedral cerium in fullerene complexCe@C+82. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(19):185002, 2016. https://doi.org/10.1088/0953-4075/49/18/185002
G. W. Stewart. A Krylov-Schur algorithm for large eigen problems. SIAM Journal on Matrix Analysis and Applications, 23(3):601–614, 2001. https://doi.org/10.1137/S0895479800371529
N. Troullier and J.L. Martins. Structural and electronic properties of C60. Physical Review B, 46(3):1754–1765,1992. https://doi.org/10.1103/PhysRevB.46.1754
A. V. Verkhovtsev, A. V. Korol and Solov’yov A. V. Quantum and classical features of the photoionization spectrum of C60. Physical Review A, 88:043201, 2013. https://doi.org/10.1103/PhysRevA.88.043201
Y. B. Xu, M.Q. Tan and U. Becker. Oscillations in the photoionization cross section of C60. Physical Review Letters, 76:3538, 1996. https://doi.org/10.1103/PhysRevLett.76.3538
K. Yabana and G. F. Bertsch. Electronic structure of C60 in a sphericalbasis. Physica Scripta, 48(5):633–637, 1993. https://doi.org/10.1088/0031-8949/48/5/022
H. Zettergren, J. Jensen, H. T. Schmidt and H. Cederquist. Electrostatic modelcal culations of fission barriers for fullerene ions. European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 29(1):63–68, 2004. https://doi.org/10.1140/epjd/e2004-00006-6
H. Zettergren, G. Sánchez, S.Dıaz-Tendero, M. Alcamı and F. Martın. Theoretical study of the stability of multiply charged C70 fullerenes. The Journal of Chemical Physics,127(10):104308, 2007. https://doi.org/10.1063/1.2768361
A. Zettl. Sturm-Liouville theory. American Mathematical Society, Providence, R. I, 2005. ISBN 9780821839058.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2019 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.