Thin plate splines for transfinite interpolation at concentric circles

DOI: https://doi.org/10.3846/13926292.2013.807317

Abstract

We propose a new method for constructing a polyspline on annuli, i.e. a C 2 surface on ℝ2 \ {0}, which is piecewise biharmonic on annuli centered at 0 and interpolates smooth data at all interface circles. A unique surface is obtained by imposing Beppo Levi conditions on the innermost and outermost annuli, and one additional restriction at 0: either prescribing an extra data value, or asking that the surface is non-singular. We show that the resulting Beppo Levi polysplines on annuli are in fact thin plate splines, i.e. they minimize Duchon's bending energy.

Keywords:

approximation, interpolation, spline

How to Cite

Bejancu, A. (2013). Thin plate splines for transfinite interpolation at concentric circles. Mathematical Modelling and Analysis, 18(3), 446-460. https://doi.org/10.3846/13926292.2013.807317

Share

Published in Issue
June 1, 2013
Abstract Views
589

View article in other formats

CrossMark check

CrossMark logo

Published

2013-06-01

Issue

Section

Articles

How to Cite

Bejancu, A. (2013). Thin plate splines for transfinite interpolation at concentric circles. Mathematical Modelling and Analysis, 18(3), 446-460. https://doi.org/10.3846/13926292.2013.807317

Share