Efficient General Linear Methods of High Order with Inherent Quadratic Stability
DOI: https://doi.org/10.3846/13926292.2014.955893Abstract
We search for general linear methods with s internal stages and r = s + 1 external stages of order p = s + 1 and stage order q = s. We require that stability function of these methods has only two non-zero roots. This is achieved by imposing the so-called inherent quadratic stability conditions. Examples of such general linear methods which are A- and L-stable up to the order p = 8 and stage order q = p - 1 are derived.
Keywords:
general linear methods, order and stage order, A- and L-stability, inherent quadratic stabilityHow to Cite
Share
License
Copyright (c) 2014 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2014 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.