Weak solutions to degenerate p(t)-Laplacian elliptic equations involving (q, r(t)) double phase Hardy terms

DOI: https://doi.org/10.3846/mma.2026.24048

Abstract

This paper is devoted to establishing novel existence criteria for weak solutions to a class of weighted quasilinear degenerate elliptic equations featuring double phase Hardy-type singular coefficients. These types of problems are rarely discussed in variable exponent Sobolev spaces in previous work. We prove the existence of at least one and at least two weak solutions via variational methods and critical point theory, under appropriate assumptions on the weight function and the nonlinearity.

Keywords:

weighted Sobolev space, degenerate p(t)-Laplacian operators, r(t)-Hardy terms, variational methods

How to Cite

Qi, L., Liu, J., & Kefi, K. (2026). Weak solutions to degenerate p(t)-Laplacian elliptic equations involving (q, r(t)) double phase Hardy terms. Mathematical Modelling and Analysis, 31(1), 116–129. https://doi.org/10.3846/mma.2026.24048

Share

Published in Issue
January 21, 2026
Abstract Views
58

References

J. P. García Azorero and I. Peral Alonso. Hardy inequalities and some critical elliptic and parabolic problems. J. Differential Equations, 144:441–476, 1998. https://doi.org/10.1006/jdeq.1997.3375

G. Bonanno. Relations between the mountain pass theorem and local minima. Adv. Nonlinear Anal., 1:205–220, 2012. https://doi.org/10.1515/anona-2012-0003

G. Bonanno and G. D’Aguì. Two non-zero solutions for elliptic Dirichlet problems. Z. Anal. Anwend., 35(4):449–464, 2016. https://doi.org/10.4171/ZAA/1573

P. Drábek, A. Kufner and F. Nicolosi. Quasilinear elliptic equations with degenerations and singularities. Walter de Gruyter, Berlin–New York, 1997. https://doi.org/10.1515/9783110804775

D. Edmunds and J. Rákosnik. Sobolev embeddings with variable exponent. Studia Math., 143:267–293, 2000. Available on Internet: https://eudml.org/doc/216819

X. Fan. Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients. J. Math. Anal. Appl., 312:464–477, 2005. https://doi.org/10.1016/j.jmaa.2005.03.057

X. Fan and X. Han. Existence and multiplicity of solutions for p(x)-Laplacian equations in RN. Nonlinear Anal., 59:173–188, 2004. https://doi.org/10.1016/j.na.2004.07.009

X. Fan, J. S. Shen and D. Zhao. Sobolev embedding theorems for spaces wk,p(x). J. Math. Anal. Appl., 262:749–760, 2001. https://doi.org/10.1006/jmaa.2001.7618

X. Fan and D. Zhao. On the spaces lp(x) and wm,p(x). J. Math. Anal. Appl., 263:424–446, 2001. https://doi.org/10.1006/jmaa.2000.7617

K. Ho and I. Sim. Existence and some properties of solutions for degenerate elliptic equations with exponent variable. Nonlinear Anal., 98:146–164, 2014. https://doi.org/10.1016/j.na.2013.12.003

K. Ho and I. Sim. Existence results for degenerate p(x)-Laplace equations with Leray-Lions type operators. Sci. China Math., 60:133–146, 2017.

M. Khodabakhshi, A. M. Aminpour, G. A. Afrouzi and A. Hadjian. Existence of two weak solutions for some singular elliptic problems. Rev.Real Acad.Cienc. ExactasFis.Nat.,110:385–393,2016.https://doi.org/10.1007/s13398-015-0239-1

Y.H. Kim, L. Wang and C. Zhang. Global bifurcation of a class of degenerate elliptic equations with variable exponents. J. Math. Anal. Appl., 371:624–637, 2010. https://doi.org/10.1016/j.jmaa.2010.05.058

J. Liu and Q. An. Analysis of degenerate p-Laplacian elliptic equations involving Hardy terms: Existence and numbers of solutions. Appl. Math. Lett., 160:109330, 2025. https://doi.org/10.1016/j.aml.2024.109330

J. Liu and Z. Zhao. Leray-Lions type p(x)-biharmonic equations involving Hardy potentials. Appl. Math. Lett., 149:108907, 2024. https://doi.org/10.1016/j.aml.2023.108907

D. D. Repovˇs and K. Saoudi. The Nehari manifold approach for singular equations involving the p(x)-Laplace operator. Complex Var. Elliptic Equ., 68:135– 149, 2023. https://doi.org/10.1080/17476933.2021.1980878

K. Saoudi. Existence and multiplicity of solutions for a quasilinear equation involving the p(x)-Laplace operator. Complex Var. Elliptic Equ., 62:318–332, 2017. https://doi.org/10.1080/17476933.2016.1219999

K. Saoudi and A. Ghanmi. A multiplicity results for a singular equation involving the p(x)-Laplace operator. Complex Var. Elliptic Equ., 62(5):695–725, 2017. https://doi.org/10.1080/17476933.2016.1238466

K. Saoudi and M. Kratou. The fibering map approach for a singular elliptic system involving the p(x)-Laplacian and nonlinear boundary conditions. Rev. Union Mat. Argentina, 62:171–189, 2021. https://doi.org/10.33044/revuma.1221

K. Saoudi, M. Kratou and S. Alsadhan. Multiplicity results for the p(x)Laplacian equation with singular nonlinearities and nonlinear Neumann boundary condition. International Journal of Differential Equations, 2016(1):3149482, 2016. https://doi.org/10.1155/2016/3149482

J. Simon. Régularité de la solution d’une équation non linéaire dans RN. In P. Benilan and J. Robert(Eds.), Journées d’Analyse Non Linéaire, volume 665 of Lecture Notes in Mathematics, pp. 205–227. Springer, Berlin, 1978.

G. Zineddaine, A. Sabiry, S. Melliani and A. Kassidi. Existence results in weighted Sobolev space for quasilinear degenerate p(z)-elliptic problems with a Hardy potential. Math. Modelling Anal., 29:460–479, 2024. https://doi.org/10.3846/mma.2024.18696

G. Zineddaine, A. Sabiry, S. Melliani and A. Kassidi. Anisotropic obstacle Neumann problems in weighted Sobolev spaces with Hardy potential and variable exponent.SeMAJ.,82:45–68,2025. https://doi.org/10.1007/s40324-024-00347-7

View article in other formats

CrossMark check

CrossMark logo

Published

2026-01-21

Issue

Section

Articles

How to Cite

Qi, L., Liu, J., & Kefi, K. (2026). Weak solutions to degenerate p(t)-Laplacian elliptic equations involving (q, r(t)) double phase Hardy terms. Mathematical Modelling and Analysis, 31(1), 116–129. https://doi.org/10.3846/mma.2026.24048

Share