Equivalents of the Riemann hypothesis involving the Gram points

    Julija Karaliūnaitė Info
    Antanas Laurinčikas Info
DOI: https://doi.org/10.3846/mma.2025.23766

Abstract

The Riemann hypothesis (RH) on zeros of the zeta-function $\zeta(s)$, $s=\sigma +it$, states that all zeros of $\zeta(s)$ in the strip $0< \sigma < 1$ lie on the line  $\sigma =1/2$. Several equivalents of RH are known. In the paper, we obtain equivalents of RH in terms of self-approximation of $\zeta(s)$ by shifts $\zeta(s+iht_k)$, $k\in \mathbb{N}$, where $\{t_k, k\in \mathbb{N}\}$ is the sequence of the Gram points.

Keywords:

approximation of analytic functions, Gram points, Riemann hypothesis, Riemann zeta-function, weak convergence of probability measures

How to Cite

Karaliūnaitė, J., & Laurinčikas, A. (2025). Equivalents of the Riemann hypothesis involving the Gram points. Mathematical Modelling and Analysis, 30(3), 571–582. https://doi.org/10.3846/mma.2025.23766

Share

Published in Issue
September 15, 2025
Abstract Views
98

References

The Millennium Prize Problems. J. Carlson, A. Jaffe and A. Wiles (Eds.), Clay Math. Inst., Cambridge, 2000. Available from Internet: http://claymath.org/millennium-problems/

B. Bagchi. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. PhD Thesis, Indian Statistical Institute, Calcutta, 1981.

B. Bagchi. Recurrence in topological dynamics and the Riemann hypothesis. Acta Math. Hungar., 50:227–240, 1987. https://doi.org/10.1007/BF01903937

P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.

K. Broughan. Equivalents of the Riemann Hypothesis. Vol. 1, Encyclopedia Math. Appl. 164, Cambridge University Press, Cambridge, 2017. https://doi.org/10.1017/9781108178228

K. Broughan. Equivalents of the Riemann Hypothesis. Vol. 2, Encyclopedia Math. Appl. 165, Cambrige University Press, Cambridge, 2017. https://doi.org/10.1017/9781108178266

J.B. Conway. Functions of One Complex Variable I. Springer, New York, 1978. https://doi.org/10.1007/978-1-4612-6313-5

C. J. de la Valée Poussin. Researches sur la théorie des nombres premiers, I. Ann. Soc. Sci. Brux., 20:183–256, 1896.

C. J. de la Valée Poussin. Researches sur la théorie des nombres premiers, II. Ann. Soc. Sci. Brux., 20:281–362, 1896.

C. J. de la Valée Poussin. Researches sur la théorie des nombres premiers, III. Ann. Soc. Sci. Brux., 20:363–397, 1896.

S.M. Gonek. Analytic Properties of Zeta and L-Functions. PhD Thesis, University of Michigan, Ann Arbor, 1979.

J.-P. Gram. Note sur les zeros de la fonction ζ(s) de Riemann. Acta Math., 27:289–304, 1903. https://doi.org/10.1007/BF02421310

J. Hadamard. Sur les zeros de la function ζ(s) de Riemann. Comptes Rendus Acad. Sci. Paris, 122:1470–1473, 1896.

D. Hilbert. Mathematische probleme. Archiv Math. Physik, 1:44–63, 1901.

D. Hilbert. Mathematical problems. Bull. Amer. Math. Soc., 8:437–479, 1902. https://doi.org/10.1090/S0002-9904-1902-00923-3

M.A. Korolev. Gram’s law in the theory of the Riemann zetafunction. Part 1. Proc. Steklov Inst. Math., 292(Suppl. 2):1–146, 2016. https://doi.org/10.1134/S0081543816030019

M.A. Korolev and A. Laurinčikas. A new application of the Gram points. Aequat. Math., 93(5):859–873, 2019. https://doi.org/10.1007/s00010-019-00647-8

E. Kowalski. An Introduction to Probabilistic Number Theory. Cambridge University Press, Cambrige, 2021. https://doi.org/10.1017/9781108888226

A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer Academic Publishers, Dordrecht, Boston, London, 1996. https://doi.org/10.1007/978-94-017-2091-5

A. Laurinčikas. Remarks on the connection of the Riemann hypothesis to self-approximation. Computation, 12(8):164, 2024. https://doi.org/10.3390/computation12080164

A. Laurinčikas. On equivalents of the Riemann hypothesis connected to the approximation properties of the zeta-function. Axioms, 14(3):169, 2025. https://doi.org/10.3390/axioms14030169.

A.A. Lavrik. Tichmarsh problem in the theory of the Riemann zeta-function. Proc. Steklov Inst. Math., 207(6):179–209, 1995.

J.-L. Mauclaire. Universality of the Riemann zeta-function: two remarks. Ann. Univ. Sci. Budap., Sect. Compat., 39:311–319, 2013. https://doi.org/10.71352/ac.39.311

T. Nakamura. The generalized strong recurrence for non-zero rational parameters. Arch. Math., 95(6):549–555, 2010. https://doi.org/10.1007/s00013-010-0205-2

B. Riemann. Über die Anzahl der Primzahlen unterhalb einer gegebenen Grösse. Monatsber. Preuss. Akad. Wiss. Berlin, pp. 671–680, 1859.

J. Steuding. Value-Distribution of L-Functions. Lecture Notes Math. vol. 1877, Springer, Berlin, Heidelberg, 2007. https://doi.org/10.1007/978-3-540-44822-8

H. von Koch. Sur la distribution des nombres premiers. Acta Math., 24:159–182, 1901. https://doi.org/10.1007/BF02403071

H. von Mangoldt. Zu Riemanns’ abhandlung “über die Anzahl der Primzahlen unter einer gegebenen Grösse”. J. Reine Angew. Math., 114:255–305, 1895. https://doi.org/10.1515/crll.1895.114.255

View article in other formats

CrossMark check

CrossMark logo

Published

2025-09-15

Issue

Section

Articles

How to Cite

Karaliūnaitė, J., & Laurinčikas, A. (2025). Equivalents of the Riemann hypothesis involving the Gram points. Mathematical Modelling and Analysis, 30(3), 571–582. https://doi.org/10.3846/mma.2025.23766

Share