Equivalents of the Riemann hypothesis involving the Gram points
DOI: https://doi.org/10.3846/mma.2025.23766Abstract
The Riemann hypothesis (RH) on zeros of the zeta-function $\zeta(s)$, $s=\sigma +it$, states that all zeros of $\zeta(s)$ in the strip $0< \sigma < 1$ lie on the line $\sigma =1/2$. Several equivalents of RH are known. In the paper, we obtain equivalents of RH in terms of self-approximation of $\zeta(s)$ by shifts $\zeta(s+iht_k)$, $k\in \mathbb{N}$, where $\{t_k, k\in \mathbb{N}\}$ is the sequence of the Gram points.
Keywords:
approximation of analytic functions, Gram points, Riemann hypothesis, Riemann zeta-function, weak convergence of probability measuresHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
The Millennium Prize Problems. J. Carlson, A. Jaffe and A. Wiles (Eds.), Clay Math. Inst., Cambridge, 2000. Available from Internet: http://claymath.org/millennium-problems/
B. Bagchi. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. PhD Thesis, Indian Statistical Institute, Calcutta, 1981.
B. Bagchi. Recurrence in topological dynamics and the Riemann hypothesis. Acta Math. Hungar., 50:227–240, 1987. https://doi.org/10.1007/BF01903937
P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.
K. Broughan. Equivalents of the Riemann Hypothesis. Vol. 1, Encyclopedia Math. Appl. 164, Cambridge University Press, Cambridge, 2017. https://doi.org/10.1017/9781108178228
K. Broughan. Equivalents of the Riemann Hypothesis. Vol. 2, Encyclopedia Math. Appl. 165, Cambrige University Press, Cambridge, 2017. https://doi.org/10.1017/9781108178266
J.B. Conway. Functions of One Complex Variable I. Springer, New York, 1978. https://doi.org/10.1007/978-1-4612-6313-5
C. J. de la Valée Poussin. Researches sur la théorie des nombres premiers, I. Ann. Soc. Sci. Brux., 20:183–256, 1896.
C. J. de la Valée Poussin. Researches sur la théorie des nombres premiers, II. Ann. Soc. Sci. Brux., 20:281–362, 1896.
C. J. de la Valée Poussin. Researches sur la théorie des nombres premiers, III. Ann. Soc. Sci. Brux., 20:363–397, 1896.
S.M. Gonek. Analytic Properties of Zeta and L-Functions. PhD Thesis, University of Michigan, Ann Arbor, 1979.
J.-P. Gram. Note sur les zeros de la fonction ζ(s) de Riemann. Acta Math., 27:289–304, 1903. https://doi.org/10.1007/BF02421310
J. Hadamard. Sur les zeros de la function ζ(s) de Riemann. Comptes Rendus Acad. Sci. Paris, 122:1470–1473, 1896.
D. Hilbert. Mathematische probleme. Archiv Math. Physik, 1:44–63, 1901.
D. Hilbert. Mathematical problems. Bull. Amer. Math. Soc., 8:437–479, 1902. https://doi.org/10.1090/S0002-9904-1902-00923-3
M.A. Korolev. Gram’s law in the theory of the Riemann zetafunction. Part 1. Proc. Steklov Inst. Math., 292(Suppl. 2):1–146, 2016. https://doi.org/10.1134/S0081543816030019
M.A. Korolev and A. Laurinčikas. A new application of the Gram points. Aequat. Math., 93(5):859–873, 2019. https://doi.org/10.1007/s00010-019-00647-8
E. Kowalski. An Introduction to Probabilistic Number Theory. Cambridge University Press, Cambrige, 2021. https://doi.org/10.1017/9781108888226
A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer Academic Publishers, Dordrecht, Boston, London, 1996. https://doi.org/10.1007/978-94-017-2091-5
A. Laurinčikas. Remarks on the connection of the Riemann hypothesis to self-approximation. Computation, 12(8):164, 2024. https://doi.org/10.3390/computation12080164
A. Laurinčikas. On equivalents of the Riemann hypothesis connected to the approximation properties of the zeta-function. Axioms, 14(3):169, 2025. https://doi.org/10.3390/axioms14030169.
A.A. Lavrik. Tichmarsh problem in the theory of the Riemann zeta-function. Proc. Steklov Inst. Math., 207(6):179–209, 1995.
J.-L. Mauclaire. Universality of the Riemann zeta-function: two remarks. Ann. Univ. Sci. Budap., Sect. Compat., 39:311–319, 2013. https://doi.org/10.71352/ac.39.311
T. Nakamura. The generalized strong recurrence for non-zero rational parameters. Arch. Math., 95(6):549–555, 2010. https://doi.org/10.1007/s00013-010-0205-2
B. Riemann. Über die Anzahl der Primzahlen unterhalb einer gegebenen Grösse. Monatsber. Preuss. Akad. Wiss. Berlin, pp. 671–680, 1859.
J. Steuding. Value-Distribution of L-Functions. Lecture Notes Math. vol. 1877, Springer, Berlin, Heidelberg, 2007. https://doi.org/10.1007/978-3-540-44822-8
H. von Koch. Sur la distribution des nombres premiers. Acta Math., 24:159–182, 1901. https://doi.org/10.1007/BF02403071
H. von Mangoldt. Zu Riemanns’ abhandlung “über die Anzahl der Primzahlen unter einer gegebenen Grösse”. J. Reine Angew. Math., 114:255–305, 1895. https://doi.org/10.1515/crll.1895.114.255
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.