Global existence and uniqueness of mild solution for a fractional Keller-Segel system in Besov-Morrey spaces
DOI: https://doi.org/10.3846/mma.2025.23324Abstract
This paper investigates the fractional Keller-Segel system involving both temporal and spatial variables. We examine fractional dissipation mechanisms for the physical variables, including chemotactic diffusion with fractional dissipation, and incorporate a time-fractional variation in the Caputo sense. Our analysis centers on the fractional heat semigroup, deriving time-decay and integral estimates for Mittag-Leffler operators in Besov-Morrey spaces. Furthermore, we establish a bilinear estimate arising from the nonlinearity of the Keller-Segel system, avoiding reliance on auxiliary norms. These results are then employed to demonstrate the existence and uniqueness of mild solution in Besov-Morrey spaces.
Keywords:
existence and uniqueness of mild solution, Mittag-Leffler operators, Besov-Morrey spaces, Caputo sense, fractional systemHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
F. Berrighi, I. Medjadj and E. Karapınar. Mild solutions for conformable fractional order functional evolution equations via Meir-Keeler type fixed point theorem. Filomat,39(6):1989–2002,2025. https://doi.org/10.2298/FIL2506989B
J.-M. Bony. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales scientifiques de l’École Normale Supérieure, 14(2):209–246, 1981. https://doi.org/10.24033/asens.1404
M.S. Bruzón, M.L. Gandarias, M. Torrisi and R. Tracina. Symmetries and special solutions of a parabolic chemotaxis system. Math. Methods Appl. Sci, 44(2):2050–2058, 2021. https://doi.org/10.1002/mma.6914
A.B. Elbukhari, Z. Fan and G. Li. Existence of mild solutions for nonlocal evolution equations with the Hilfer derivatives. J. Funct. Spaces, 2023(1):8662375, 2023. https://doi.org/10.1155/2023/8662375
C. Escudero. The fractional Keller-Segel model. Nonlinearity, 19(12):2909, 2006. https://doi.org/10.1088/0951-7715/19/12/010
G. Estrada-Rodriguez, H. Gimperlein and K.J. Painter. Fractional Patlak-KellerSegel equations for chemotactic superdiffusion. SIAM J. Appl. Math, 78(2):1155– 1173, 2018. https://doi.org/10.1137/17M1142867
G. Estrada-Rodriguez, H. Gimperlein, K.J. Painter and J. Stocek. Space-time fractional diffusion in cell movement models with delay. Math. Models Methods Appl. Sci, 29(01):65–88, 2019. https://doi.org/10.1142/S0218202519500039
L.C.F. Ferreira and R.P. da Silva. On the well-posedness of the Hall-MHD system in a critical setting of Besov-Morrey type. arXiv preprint arXiv:2410.20465, 2024. https://doi.org/10.48550/arXiv.2410.20465
S. Gala, Q. Liu and M.A. Ragusa. Logarithmically improved regularity criterion for the nematic liquid crystal flows in space. Comput. Math. Appl., 65(11):1738–1745, 2013. https://doi.org/10.1016/j.camwa.2013.04.003
H. Khaider, A. Azanzal, R. Abderrahmane and M. Said. Mild solution for the time fractional magneto-hydrodynamics system. Anal. Math. Phys, 14(2):14, 2024. https://doi.org/10.1007/s13324-024-00871-9
H. Khaider, A. Azanzal and A. Raji. Well-posedness of solutions for the 2D stochastic quasi-geostrophic equation in critical Fourier-BesovMorrey spaces. Electron. J. Differential Equations, 2024(01-83):74–10, 2024. https://doi.org/10.58997/ejde.2024.74
F. Mainardi, S. Rionero and T. Ruggeri. On the initial value problem for the fractional diffusion-wave equation. Waves and stability in continuous media, 7:246–251, 1994.
A. Mazzucato. Besov-Morrey spaces: function space theory and applications to non-linear PDE. Trans. Amer. Math. Soc. Ser. B, 355(4):1297–1364, 2003. https://doi.org/10.1090/S0002-9947-02-03214-2
J.E. Pérez-López, D.A. Rueda-Gómez and E.J. Villamizar-Roa. On the fractional heat semigroup and product estimates in Besov spaces and applications in theoretical analysis of the fractional keller–segel system. Bol. Soc. Mat. Mex, 30(3):88, 2024. https://doi.org/10.1007/s40590-024-00653-0
Z. Zhai. Global well-posedness for nonlocal fractional Keller–Segel systems in critical Besov spaces. Nonlinear Anal., 72(6):3173–3189, 2010. https://doi.org/10.1016/j.na.2009.12.011
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License

This work is licensed under a Creative Commons Attribution 4.0 International License.