On improved P1-interpolation error estimates in W1,p(0, 1): application to the finite element method

    Joel Chaskalovic Info
    Franck Assous Info
DOI: https://doi.org/10.3846/mma.2026.22775

Abstract

Based on a new Taylor-like formula, we derived an improved interpolation error estimate in W1,p. We compare it with the classical error estimates based on the standard Taylor formula, and also with the corresponding interpolation error estimate, derived from the mean value theorem. We then assess the improvement in accuracy we can get from this formula, leading to a significant reduction in finite element computation costs.

Keywords:

Taylor-like formula, error estimates, interpolation error, approximation error, finite elements

How to Cite

Chaskalovic, J., & Assous, F. (2026). On improved P1-interpolation error estimates in W1,p(0, 1): application to the finite element method. Mathematical Modelling and Analysis, 31(1), 96–115. https://doi.org/10.3846/mma.2026.22775

Share

Published in Issue
January 21, 2026
Abstract Views
43

References

A. Abdulle and G. Garegnani. A probabilistic finite element method based on random meshes: A posteriori error estimators and Bayesian inverse problems. Comput. Methods Appl. Mech. Eng., 384:113961, 2021. https://doi.org/10.1016/j.cma.2021.113961

K.E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons, 2nd edition, 1988.

N.S. Barnett and S.S. Dragomir. Applications of Ostrowski’s version of the Gru¨ss inequality for trapezoid type rules. Tamkang J. Math., 37(2):163–173, 2006. https://doi.org/10.5556/j.tkjm.37.2006.161

S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods, volume 15 of Texts in Applied Mathematics. Springer, 3rd edition, 2008. https://doi.org/10.1007/978-0-387-75934-0

H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7

R.L. Burden and D. Faires. Numerical Analysis. Brooks/Cole, Pacific Grove, 9th edition, 2011.

P. Cerone and S.S. Dragomir. Trapezoidal-type rules from an inequalities point of view. In G. Anastassiou(Ed.), Handbook of Analytic-Computational Methods in Applied Mathematics, pp. 65–134. CRC Press, New York, 2000. https://doi.org/10.1201/9780429123610-3

J. Chaskalovic. A probabilistic approach for solutions of determinist PDEs as well as their finite element approximations. Axioms, 10:349, 2021. https://doi.org/10.3390/axioms10040349

J. Chaskalovic and F. Assous. Enhancing interpolation and approximation error estimates using a novel Taylor-like formula. J. Comput. Appl. Math., 452:116153, 2025. https://doi.org/10.1016/j.cam.2024.116153

J. Chaskalovic and F. Assous. A refined first-order expansion formula in Rn: Application to interpolation and finite element error estimates. J. Comput. Appl. Math., 457:116274, 2025. https://doi.org/10.1016/j.cam.2024.116274

J. Chaskalovic, F. Assous and H. Jamshidipour. A new second order Taylor-like theorem with an optimized reduced remainder. J. Comput. Appl. Math., 438:115496, 2024. https://doi.org/10.1016/j.cam.2023.115496

J. Chaskalovic and H. Jamshidipour. A new first order expansion formula with a reduced remainder. Axioms, 11:562, 2022. https://doi.org/10.3390/axioms11100562

S.S. Dragomir, P. Cerone and A. Sofo. Some remarks on the trapezoid rule in numerical integration. Indian J. Pure Appl. Math., 31(5):475–494, 2000.

A. Ern and J.L. Guermond. Theory and Practice of Finite Elements. Springer, 2004. https://doi.org/10.1007/978-1-4757-4355-5

P. Hennig, M.A. Osborne and M. Girolami. Probabilistic numerics and uncertainty in computations. Proc. R. Soc. A Math. Phys. Eng. Sci., 471(2179):20150142, 2015. https://doi.org/10.1098/rspa.2015.0142

C.J. Oates and T.J. Sullivan. A modern retrospective on probabilistic numerics. Stat.Comput.,29:1335–1351,2019. https://doi.org/10.1007/s11222-019-09902-z

B. Pascal. Traité du triangle arithmétique. Guillaume Desprez, 1665.

P.A. Raviart and J.M. Thomas. Introduction à l’analyse numérique des équations aux dérivées partielles. Masson, 1982.

B. Taylor. Methodus incrementorum directa et inversa. Innys, London, 1717. Prop. VII, Th. III, p. 21

View article in other formats

CrossMark check

CrossMark logo

Published

2026-01-21

Issue

Section

Articles

How to Cite

Chaskalovic, J., & Assous, F. (2026). On improved P1-interpolation error estimates in W1,p(0, 1): application to the finite element method. Mathematical Modelling and Analysis, 31(1), 96–115. https://doi.org/10.3846/mma.2026.22775

Share