Fixed point approximation of contractive-like mappings using a stable iterative family and its dynamics via quadratic polynomials
DOI: https://doi.org/10.3846/mma.2025.21763Abstract
This study aims at presenting a novel bi-parametric family of iterative methods for computing the fixed points of a contractive-like mapping. We thoroughly analyze the strong and stable convergence of the proposed technique and explore its applicability across various problem domains. Regarding convergence, it is proven that for several operators, the Mann iteration is analogous to the proposed multi-step class, and vice-versa. Moreover, numerical tests demonstrate the superior performance of the new procedures compared to existing three-step schemes. We further examine the dynamic behavior of several fixed-point iterative techniques when applied to quadratic polynomials. Based on the outcomes of these experiments, it can be concluded that the proposed family demonstrates both validity and effectiveness.
Keywords:
fixed point iteration, Banach space, Mann iteration, Φ-stability, contractive-like operatorHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
H.A. Abass, A.A. Mebawondu and O.T. Mewomo. Some results for a new three steps iteration scheme in Banach spaces. Bulletin of the Transilvania University of Brasov. Mathematics, Informtics, Physics. Series III, pp. 1–18, 2018.
M. Abbas and T. Nazir. Some new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesn., 66(2):223–234, 2014.
R.P. Agarwal, D.O. Regan and D. Sahu. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal., 8(1):61, 2007.
T.O. Alakoya, V.A. Uzor, O.T. Mewomo and J.C. Yao. On a system of monotone variational inclusion problems with fixed-point constraint. J. Inequalities Appl., 2022(1):47, 2022. https://doi.org/10.1186/s13660-022-02782-4
S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math., 3(1):133–181, 1922. https://doi.org/10.4064/fm-3-1-133-181
V. Berinde. On the stability of some fixed point procedures. Bul. S¸tiin¸t. - Univ. Baia Mare, Ser. B Fasc. Mat.-Inform., pp. 7–14, 2002.
V. Berinde and F. Takens. Iterative Approximation of Fixed Points, volume 1912. Springer, Berlin, Heidelberg, 2 edition, 2007.
P. Blanchard. Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc., 11(1):85–141, 1984. https://doi.org/10.1090/S0273-0979-1984-15240-6
P. Blanchard. The dynamics of Newton’s method. In Proceedings of Symposia in Applied Mathematics, volume 49, pp. 139–154. American Mathematical Society Providence, RI, USA, 1994. https://doi.org/10.1090/psapm/049/1315536
A. Cordero, J.R. Torregrosa and P. Vindel. Dynamics of a family of Chebyshev–Halley type methods. Appl. Math. Comput., 219(16):8568–8583, 2013. https://doi.org/10.1016/j.amc.2013.02.042
A. Douady and J.H. Hubbard. On the dynamics of polynomial-like mappings. In Ann. Sci. Ec. Norm. Super., volume 18, pp. 287–343, 1985. https://doi.org/10.24033/asens.1491
H.A. Hammad, W. Cholamjiak, D. Yambangwai and H. Dutta. A modified shrinking projection methods for numerical reckoning fixed points of Gnonexpansive mappings in Hilbert spaces with graphs. Miskolc Math. Notes., 20(2):941–956, 2019. https://doi.org/10.18514/MMN.2019.2954
A.M. Harder. Fixed Point Theory and Stability Results for Fixed Point Iteration Procedures. University of Missouri-Rolla, PhD thesis, Rolla, MO, USA, 1987.
C.O. Imoru and M.O. Olatinwo. On the stability of Picard and Mann iteration processes. Carpathian J. Math., 19(2):155–160, 2003.
S. Ishikawa. Fixed points by a new iteration method. Proceedings of the American Mathematical Society, 44(1):147–150, 1974. https://doi.org/10.1090/S0002-9939-1974-0336469-5
V. Kanwar, P. Sharma, I.K. Argyros, R. Behl, C. Argyros, A. Ahmadian and M. Salimi. Geometrically constructed family of the simple fixed point iteration method. Mathematics, 9(6):694, 2021. https://doi.org/10.3390/math9060694
V. Karakaya, Y. Atalan, K. Doğan and N.E.H. Bouzara. Some fixed point results for a new three steps iteration process in Banach spaces. Fixed Point Theory, 18(2):625–640, 2017. https://doi.org/10.24193/fpt-ro.2017.2.50
M.A. Krasnoselskiĭ. Two remarks on the method of successive approximations. Uspehi Mat. Nauk., 10(1):123–127, 1955.
M.O. Osilike. Stability results for fixed point iteration procedures. J. Nigerian Math. Soc, 14(15):17–29, 1995.
É. Picard. Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. J. Math. Pures. Appl., 6:145–210, 1890.
H. Schaefer. Uber die methode sukzessive. approximationen. Iber. Deutch. Math. Verein., 59:131–140, 1957.
P. Sharma, H. Ramos, R. Behl and V. Kanwar. A new three-step fixed point iteration scheme with strong convergence and applications. J. Comput. Appl. Math., 430:115242, 2023. https://doi.org/10.1016/j.cam.2023.115242
T.M. Tuyen and H.A. Hammad. Effect of shrinking projection and CQ-methods on two inertial forward–backward algorithms for solving variational inclusion problems. Rendiconti del Circolo Matematico di Palermo Series 2, 70:1669– 1683, 2021. https://doi.org/10.1007/s12215-020-00581-8
K. Ullah and M. Arshad. Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process. Filomat, 32(1):187–196, 2018. https://doi.org/10.2298/FIL1801187U.
X. Weng. Fixed point iteration for local strictly pseudocontractive mapping. Proc. Amer. Math. Soc., 113(3):727–731, 1991. https://doi.org/10.2307/2048608
T. Zamfirescu. Fix point theorems in metric spaces. Archiv der Mathematik, 23:292–298, 1972. https://doi.org/10.1007/BF01304884
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.