Existence results for fractional p-Laplacian systems via young measures

    Farah Balaadich   Affiliation
    ; Elhoussine Azroul Affiliation


In this paper, we show the existence result of the following fractional p-Laplacian system


for a given datum f. The existence of weak solutions is obtained by using the theory of Young measures.

Keyword : fractional p-Laplacian system, weak solution, Galerkin method, Young measure

How to Cite
Balaadich, F., & Azroul, E. (2022). Existence results for fractional p-Laplacian systems via young measures. Mathematical Modelling and Analysis, 27(2), 232–241.
Published in Issue
Apr 27, 2022
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


L. Ambrosio, G. De Philippis and L. Martinazzi. Gamma-convergence of nonlocal perimeter functionals. Manuscripta Mathematica, 134(3-4):377–403, 2011.

E. Azroul and F. Balaadich. Weak solutions for generalized p-Laplacian systems via Young measures. Moroccan Journal of Pure and Applied Analysis, 4(2):77– 84, 2018.

E. Azroul and F. Balaadich. Existence of solutions for a class of Kirchhoff-type equation via Young measures. Numerical Functional Analysis and Optimization, 42(4):460–473, 2021.

E. Azroul and F. Balaadich. On strongly quasilinear elliptic systems with weak monotonicity. Journal of Applied Analysis, 27(1):153–162, 2021.

E. Azroul and F. Balaadich. A weak solution to quasilinear elliptic problems with perturbed gradient. Rendiconti del Circolo Matematico di Palermo, II, 70(1):151–166, 2021.

F. Balaadich and E. Azroul. Quasilinear elliptic systems in perturbed form. International Journal of Nonlinear Analysis and Applications, 10(2):255–266, 2019.

F. Balaadich and E. Azroul. On a class of quasilinear elliptic systems. Acta Scientiarum Mathematicarum, 87(1–2):141–152, 2021.

F. Balaadich and E. Azroul. Elliptic systems of p-Laplacian type. Tamkang Journal of Mathematics, 53(1):11–21, 2022.

J.M. Ball. A version of the fundamental theorem for Young measures. In PDEs and continuum models of phase transitions, volume 344, pp. 207–215. Springer, Springer, Berlin, Heidelberg, 1989.

B. Barrios, E. Colorado, A. De Pablo and U. Sa´nchez. On some critical problems for the fractional Laplacian operator. Journal of Differential Equations, 252(11):6133–6162, 2012.

G.M. Bisci. Fractional equations with bounded primitive. Applied Mathematics Letters, 27:53–58, 2014.

G.M. Bisci and D. Repovš. Higher nonlocal problems with bounded potential. Journal of Mathematical Analysis and Applications, 420(1):167–176, 2014.

L. Caffarelli, J.-M. Roquejoffre and O. Savin. Nonlocal minimal surfaces. Communications on Pure and Applied Mathematic, 63(9):1111–1144, 2010.

E. Di Nezza, G. Palatucci and E. Valdinoci. Hitchhiker’s guide to the fractional Sobolev spaces. Bulletin des sciences Math´ematiques, 136(5):521–573, 2012.

L.C. Evans. Weak convergence methods for nonlinear partial differential equations, volume 74. American Mathematical Society, 1990.

A. Fiscella, R. Servadei and E. Valdinoci. Density properties for fractional Sobolev spaces. Annales AcademiæScientiarum FennicæMathematica, 40(1):235–253, 2015.

N. Hungerbühler. A refinement of Balls theorem on Young measures. New York Journal of Mathematics, 3:48–53, 1997.

A. Iannizzotto and M. Squassina. 1/2-Laplacian problems with exponential nonlinearity. Journal of Mathematical Analysis and Applications, 414(1):372–385, 2014.

F. Jiao and Y. Zhou. Existence of solutions for a class of fractional boundary value problems via critical point theory. Computers & Mathematics with Applications, 62(3):1181–1199, 2011. Special Issue on Advances in Fractional Differential Equations II.

A.A. Kilbas, H.M. Srivastava and J.J. Trujillo. Theory and applications of fractional differential equations, volume 204. Elsevier, 2006.

J.-L. Lions. Quelques méthodes de résolution de problemes aux limites non linéaires. Études mathématiques, 1969.

H. Qiu and M. Xiang. Existence of solutions for fractional p-Laplacian problems via Leray-Schauders nonlinear alternative. Boundary Value Problems, 83:1–8, 2016.

W. Rudin. Real and complex analysis. McGraw-Hill Book Company, New York, NY, 1966.

R. Servadei and E. Valdinoci. Mountain Pass solutions for non-local elliptic operators. Journal of Mathematical Analysis and Applications, 389(2):887–898, 2012.

K. Teng. Two nontrivial solutions for hemivariational inequalities driven by nonlocal elliptic operators. Nonlinear Analysis: Real World Applications, 14(1):867– 874, 2013.

M. Xiang, B. Zhang and M. Ferrara. Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian. Journal of Mathematical Analysis and Applications, 424(2):1021–1041, 2015.