A weighted version of the Mishou theorem
DOI: https://doi.org/10.3846/mma.2021.12445Abstract
In 2007, H. Mishou obtained a joint universality theorem for the Riemann and Hurwitz zeta-functions ζ(s) and ζ(s,α) with transcendental parameter α on the approximation of a pair of analytic functions by shifts (ζ(s+iτ),ζ(s+iτ,α)), τ ∈R. In the paper, the Mishou theorem is generalized for the set of above shifts having a weighted positive lower density. Also, the case of a positive density is considered.
Keywords:
Hurwitz zeta-function, Mishou theorem, Riemann zeta-function, universalityHow to Cite
Share
License
Copyright (c) 2021 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
B. Bagchi. The Statistical Behaviuor and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. PhD Thesis, Indian Statistical Institute, Calcutta, 1981.
A. Balčiūnas, V. Garbaliauskienė, J. Karaliūnaitė, R. Macaitienė, J. Petuškinaitė and A. Rimkevičienė. Joint discrete approximation of a pair of analytic functions by periodic zeta-functions. Math. Modell. Anal., 25(1):71–87, 2020. https://doi.org/10.3846/mma.2020.10450"> https://doi.org/10.3846/mma.2020.10450
A. Balčiūnas and G. Vadeikis. A weighted universality throrem for the Hurwitz zeta-function. Šiauliai Math. Semin. , 12(20):5–18, 2017.
P. Billingsley. Convergence of Probability Measures. Willey, New York, 1968.
V. Garbaliauskienė, J. Karaliūnaitė and A. Laurinčikas. On zeros of some combinations of Dirichlet L-functions and Hurwitz zeta-functions. Math. Modell. Anal., 22(6):733–749, 2017. https://doi.org/10.3846/13926292.2017.1365313"> https://doi.org/10.3846/13926292.2017.1365313
S.M. Gonek. Analytic Properties of Zeta and L-Functions. PhD Thesis, University of Michigan, 1979.
R. Kačinskaitė and B. Kazlauskaitė. Two remarks related to the universality of zeta-functions with periodic coefficients. Results Math., 73(3):95, 2018. https://doi.org/10.1007/s00025-018-0856-z"> https://doi.org/10.1007/s00025-018-0856-z
R. Kačinskaitė and A. Laurinčikas. The joint distribution of periodic zeta-functions. Studia Sci. Math. Hungarica, 48(2):257–279, 2011. https://doi.org/10.1556/sscmath.48.2011.2.1162"> https://doi.org/10.1556/sscmath.48.2011.2.1162
R. Kačinskaitė and K. Matsumoto. The mixed joint universality for a class of zeta-functions. Math. Nachr., 288(16):1900–1909, 2015. https://doi.org/10.1002/mana.201400366"> https://doi.org/10.1002/mana.201400366
R. Kačinskaitė and K. Matsumoto. Remarks on the mixed joint universality for a class of zeta-functions. Bull. Austral. Math. Soc., 95(2):187–198, 2017. https://doi.org/10.1017/S0004972716000733"> https://doi.org/10.1017/S0004972716000733
R. Kačinskaitė and K. Matsumoto. On mixed joint discrete universality for a class of zeta-functions. II. Lith. Math. J., 59(1):54–66, 2019. https://doi.org/10.1007/s10986-019-09432-1"> https://doi.org/10.1007/s10986-019-09432-1
A. Laurinčikas. On the universality of the Riemann zeta-function. Lith. Math. J., 35(4):399–402, 1995. https://doi.org/10.1007/BF02348827"> https://doi.org/10.1007/BF02348827
A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer Academic Publishers, Dordrecht, Boston, London, 1996. https://doi.org/10.1007/978-94-017-2091-5"> https://doi.org/10.1007/978-94-017-2091-5
A. Laurinčikas. The joint universality of Hurwitz zeta-functions. Šiauliai Math. Semin., 3(11):169–187, 2008.
A. Laurinčikas. Joint universality of zeta-functions with periodic coefficients. Izv. Math., 74(3):515–539, 2010. https://doi.org/10.1070/IM2010v074n03ABEH002497"> https://doi.org/10.1070/IM2010v074n03ABEH002497
A. Laurinčikas. Universality theorems for zeta-functions with periodic coefficients. Siber. Math. J., 57(2):330–339, 2016. https://doi.org/10.1134/S0037446616020154"> https://doi.org/10.1134/S0037446616020154
A. Laurinčikas. A discrete version of the Mishou theorem. II. Proc. Steklov Inst. Math., 296(1):172–182, 2017. https://doi.org/10.1134/S008154381701014X"> https://doi.org/10.1134/S008154381701014X
A. Laurinčikas. Joint value distribution theorems for the Riemann and Hurwitz zeta-functions. Moscow Math. J., 18(2):349–366, 2018. https://doi.org/10.17323/1609-4514-2018-18-2-349-366"> https://doi.org/10.17323/1609-4514-2018-18-2-349-366
A. Laurinčikas. Joint discrete universality for periodic zeta-functions. Quaest. Math., 42(5):687–699, 2019. https://doi.org/10.2989/16073606.2018.1481891"> https://doi.org/10.2989/16073606.2018.1481891
A. Laurinčikas. Non-trivial zeros of the Riemann zeta-function and joint universality theorems. J. Math. Anal. Appl., 475(1):385–402, 2019. https://doi.org/10.1016/j.jmaa.2019.02.047"> https://doi.org/10.1016/j.jmaa.2019.02.047
A. Laurinčikas. On the Mishou theorem with algebraic parameter. Siber. Math. J., 60(6):1075–1082, 2019. https://doi.org/10.1134/S0037446619060144"> https://doi.org/10.1134/S0037446619060144
A. Laurinčikas. Joint discrete universality for periodic zeta-functions. II. Quaest. Math., 2020. https://doi.org/10.2989/16073606.2019.1654554"> https://doi.org/10.2989/16073606.2019.1654554
A. Laurinčikas and R. Garunkštis. The Lerch Zeta-Function. Kluwer Academic Publishers, Dordrecht, Boston, London, 2002. https://doi.org/10.1007/978-94-017-6401-8">https://doi.org/10.1007/978-94-017-6401-8
A. Laurinčikas and R. Macaitienė. Joint approximation of analytic functions by shifts of the Riemann and periodic Hurwitz zeta-functions. Appl. Anal. Discrete Math., 12(2):508–527, 2018. https://doi.org/10.2298/AADM170713016L"> https://doi.org/10.2298/AADM170713016L
A. Laurinčikas, D. Šiaučiūnas and G. Vadeikis. Weighted discrete universality of the Riemann zeta-function. Math. Modell. Anal., 25(1):21–36, 2020. https://doi.org/10.3846/mma.2020.10436"> https://doi.org/10.3846/mma.2020.10436
R. Macaitienė, M. Stoncelis and D. Šiaučiūnas. A weighted discrete universality theorem for periodic zeta-functions. II. Math. Modell. Analysis, 22(6):750–762, 2017. https://doi.org/10.3846/13926292.2017.1365779"> https://doi.org/10.3846/13926292.2017.1365779
R. Macaitienė, M. Stoncelis and D. Šiaučiūnas. A weighted universality the-orem for periodic zeta-functions. Math. Modell. Analysis, 22(1):95–105, 2017. https://doi.org/10.3846/13926292.2017.1269373"> https://doi.org/10.3846/13926292.2017.1269373
S.N. Mergelyan. Uniform approximations to functions of complex variable. Usp. Mat. Nauk., 7:31–122, 1952 (in Russian).
H. Mishou. The joint value distribution of the Rieman zeta-function and Hurwitz zeta-functions. Lith. Math. J., 47(1):32–47, 2007. https://doi.org/10.1007/s10986-007-0003-0"> https://doi.org/10.1007/s10986-007-0003-0
J. Steuding. Value-Distribution of L-Functions. Lecture Notes Math. vol. 1877, Springer, Berlin, Heidelberg, 2007. https://doi.org/10.5565/PUBLMAT_PJTN05_12"> https://doi.org/10.5565/PUBLMAT_PJTN05_12
S.M. Voronin. Theorem on the “universality” of the Riemann zeta-function. Izv. Akad. Nauk SSSR, Ser. Matem., 39:475–486, 1975 (in Russian).
S.M. Voronin. Analytic Properties of Generating Function of Arithmetic Objects. Diss. doktor fiz.-matem. nauk, Steklov Math. Inst., Moscow, 1977 (in Russian).
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2021 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.