Viscoelastic Modulus Reconstruction Using Time Harmonic Vibrations

    Habib Ammari Info
    Jin Keun Seo Info
    Liangdong Zhou Info

Abstract

This paper presents a new iterative reconstruction method to provide high-resolution images of shear modulus and viscosity via the internal measurement of displacement fields in tissues. To solve the inverse problem, we compute the Frechet derivatives of the least-squares discrepancy functional with respect to the shear modulus and shear viscosity. The proposed iterative reconstruction method using this Fr´echet derivative does not require any differentiation of the displacement data for the full isotropic linearly viscoelastic model, whereas the standard algebraic inversion method requires at least double differentiation. Because the minimization problem is ill-posed and highly nonlinear, this adjoint-based optimization method needs a very well-matched initial guess. We find a good initial guess. For a well-matched initial guess, numerical experiments show that the proposed method considerably improves the quality of the reconstructed viscoelastic images.

Keywords:

inverse problem, viscoelasticity, ill-posed problem, reconstruction formula

How to Cite

Ammari, H., Seo, J. K., & Zhou, L. (2015). Viscoelastic Modulus Reconstruction Using Time Harmonic Vibrations. Mathematical Modelling and Analysis, 20(6), 836-851. https://doi.org/10.3846/13926292.2015.1117531

Share

Published in Issue
November 23, 2015
Abstract Views
670

View article in other formats

CrossMark check

CrossMark logo

Published

2015-11-23

Issue

Section

Articles

How to Cite

Ammari, H., Seo, J. K., & Zhou, L. (2015). Viscoelastic Modulus Reconstruction Using Time Harmonic Vibrations. Mathematical Modelling and Analysis, 20(6), 836-851. https://doi.org/10.3846/13926292.2015.1117531

Share