A POD-Based Reduced-Order Stabilized Crank–Nicolson MFE Formulation for the Non-Stationary Parabolized Navier–Stokes Equations
Abstract
We firstly employ a proper orthogonal decomposition (POD) method, Crank–Nicolson (CN) technique, and two local Gaussian integrals to establish a PODbased reduced-order stabilized CN mixed finite element (SCNMFE) formulation with very few degrees of freedom for non-stationary parabolized Navier–Stokes equations. Then, the error estimates of the reduced-order SCNMFE solutions, which are acted as a suggestion for choosing number of POD basis and a criterion for updating POD basis, and the algorithm implementation for the POD-based reduced-order SCNMFE formulation are provided, respectively. Finally, some numerical experiments are presented to illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order SCNMFE formulation is feasible and efficient for finding numerical solutions of the non-stationary parabolized Navier–Stokes equations.
Keywords:
proper orthogonal decomposition method, reduced-order stabilized Crank– Nicolson mixed finite element formulation, non-stationary parabolized Navier–Stokes equations, error estimateHow to Cite
Share
License
Copyright (c) 2015 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2015 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.