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 1998 TechnikaSOME NUMERICAL ASPECTS OF THELEVEL SET METHODMATHIAS MOOG, RAINER KECK AND AIVARS ZEMITISITWM University of KaiserslauternErwin-Schroedinger-Strasse, D-67663 Kaiserslautern, GermanyE-mail: moog@itwm.uni-kl.de, rkeck@mathematik.uni-kl.de,zemitis@itwm.uni-kl.deABSTRACTMany practical applications imply the solution of free boundary value problems. If thefree boundary is complex and can change its topology, it will be hard to solve suchproblems numerically. In recent years a new method has been developed, which canhandle boundaries with complex geometries. This new method is called the level setmethod. However, the level set method also has some drawbacks, which are mainlyconcerning conservation of mass or numerical instabilities of the boundaries.Our aim is to analyze some aspects of the level set method on the basis of two-phase 
owin a Hele-Shaw cell. We investigate instabilities of two-phase 
ow between two parallelplates. A solution of the linearized problem is obtained analytically in order to checkwhether the numerical schemes compute reasonable results.The developed numerical scheme is based on �nite di�erence approximations and the levelset method. The equations of two-phase Hele-Shaw 
ow are written in a modi�edformulation using the one-dimensional Dirac delta-function. Since the level set function isnot smooth enough after re-initialization, special attention during the computation ofcurvature is needed.We propose a method that can solve the problems for two-phase Hele-Shaw 
ow withchanging topology. The numerical solution shows good agreement with the analyticalsolution of the linearized problem. We describe the method below and analyze the results.1. INTRODUCTIONHele-Shaw cells are interesting objects in hydrodynamic and the informationabout processes there can be important for di�erent applications. Moreover,the simulation of Hele-Shaw cells is a challenging task for numerical methods.Here can be found di�culties which occur also in free boundary value prob-lems for the Navier-Stokes equations. Our experience show that the level setmethod is harder to use in the case of Hele-Shaw 
ow as in the case of Stokes
ow. Hele-Shaw 
ow has also similarities with 
ow in porous media, there-fore, new results in this area can give a better understanding of the processes



Some numerical aspects of the level set method 141in porous materials.Numerical methods for Hele-Shaw 
ows are discussed in several papers. Anoverview is given in [11]. We will concentrate our attention on the instabilitiesof two-phase 
ow with di�erent viscosities in Hele-Shaw cells, where the 
owis driven by surface tension and a pressure di�erence. Very often in literatureonly one of these aspects is analyzed. We are interested in the interaction ofsurface tension and the viscous forces on the interface, which separates twophases.If surface tension is taken into account, information about the local cur-vature � of the interface will be needed. This parameter reinforce the non-linearity of the free boundary problem for two phase 
ow. Some analyticalestimates for such problems can be achieved by simpli�cations of the cur-vature term. The full problem can be solved by numerical methods. Heredi�erent approaches can be used. Recent results show, that �nite di�erencesin combination with the level set method can compete with methods basedon integral equations [9].We develop a variant of the level set method for Hele-Shaw 
ow, which canalso be used in the case of disruption and coalescence in every phase.2. MATHEMATICAL MODELMathematically, two-phase 
ow in Hele-Shaw cell can be described by a freeboundary value problem. When the speed of motion ~v and the distance be-tween plates d is small enough, then it can be assumed [8], that:~v = �Krp; (1)where p is the pressure, K = d212� and � is the viscosity. In this approxi-mation the process is assumed to be quasi-stationary and at every time stepthe pressure ful�lls an elliptic equation. All equations are assumed to be in-dependent of time. Only the motion of the interface is time-dependent. Inthe level set approach the interface � is de�ned as the zero level of a level setfunction F (x; y; t): � = f(x; y) : F (x; y; t) = 0g: (2)In order to investigate the 
ow in the domain 
, let the level set functiondivide 
 into two parts 
 = 
+S
�, where
+ = f(x; y) 2 
 : F (x; y; t) > 0g;
� = f(x; y) 2 
 : F (x; y; t) < 0g:Every part corresponds to an appropriate phase. We denote the outer bound-ary of the domain 
 by @
.Since we consider two phases with di�erent viscosities, the coe�cient K hasa jump on the interface. Therefore, additional coupling conditions are needed.



142 Moog, Keck, ZemitisOne condition is the continuity of the 
ux on the interface:[kpn]� = 0 (3)and the other is the jump condition for the pressure on the interface, whichis given by the Laplace-Young equation:[p]� = ��: (4)Here pn denotes the directional derivative of the pressure in normal directionto the interface, � is the surface tension and � is the curvature of the interface.We solve the problem in a rectangular domain:
 = f(x; y) : x 2 [a; b]; y 2 [c; d]g: (5)The standard formulation of the problem can be given as follows:
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r � (k(x; y)rp) = 0; in 
; (6)[kpn]� = 0; (7)[p]� = ��; (8)p jx=a = p0; (9)p jx=b = p1; (10)pn jy=c = 0; (11)pn jy=d = 0; (12)@tF + ~v � rF = 0; in 
; t > 0; (13)F (x; y; 0) = F0(x; y): (14)Here p0, p1 are given constants, F0(x; y) is a given function andk(x; y) = � k+ if (x; y) 2 
+;k� if (x; y) 2 
�:The brackets in [f ]� denote the jump on the interface for some function f .2.1. The modi�ed formulation of the problemIn [4], a new level set formulation for two-phase 
ow in the case of Navier-Stokes equations is given. The idea is to use in the Navier-Stokes equations theone-dimensional Dirac delta function in order to describe the jump conditionof the pressure.Similarly to [4; 10] we can get a modi�ed formulation for our problemwithout explicit jump conditions in the case of porous mediar � (k(rp� ��F �(F )rF )) = 0; (15)@tF + ~v � rF = 0: (16)



Some numerical aspects of the level set method 143where k(x; y) = k� + (k+ � k�)H(F (x; y; t)):Here, �(F ) is the one-dimensional Dirac delta-function and H(f) is theone-dimensional Heaviside function. The curvature �F in this case is thecurvature of the level set function F (x; y; t) at the point (x; y; t). The prob-lem (15)-(16) must be completed with corresponding initial and boundaryconditions.3. NUMERICAL METHODWe will solve the modi�ed problem by �nite di�erences. In the case of ex-plicit time-steeping equation (15) is a linear elliptic equation for the pressurewith variable coe�cients and it can be approximated by standard di�erenceschemes [7]. If the pressure in known, the speed ~v at every grid-point can alsobe estimated. These values can be used in equation (16), which is a hyperbolicequation for the level set function F (x; y; t). Therefore, the update in timefor the level set function can be done by high-order ENO-schemes [6]. Themain steps of the numerical method are the following:1. Initialization of the level set function2. Solving of the equation for pressure p and estimation of the velocity ~v3. Update in time of the level set function by the discrete analogous ofequation (13)4. Re-initialization of the level set function5. Repeat from step 2.All steps in the method are very important. The numerical method canwork only if these steps are co-ordinated to each other. Since the free bound-ary is de�ned by the zero level of the function F (x; y; t), the properties ofthe discrete level set function are crucial for the method. The function Fis only modi�ed during the update-step (step 3) and during re-initialization(step 4). These steps must be implemented so that the following propertiescan be guaranteed:� stable motion of the interface� conservation of mass for every phaseSuccess of the simulation is guaranteed only if all steps are correctly done. Wewill explain which stages are most important for the algorithm in our opinion.3.1. Calculation of the curvatureFor a discretization of equation (15) the curvature �F must be discretized,too. If we want to use central di�erences for the approximation of the cur-vature, the discretized level set function must be smooth enough. Numerical



144 Moog, Keck, Zemitisexperiments with the standard equation for re-initialization (20) show, thateven third-order ENO schemes do not guarantee a su�ciently smooth levelset function. Therefore, in [4] a special smoothing procedure has been usedto enforce smoothness of the level set function. In [5] weighted ENO-schemes(WENO) are investigated and a main result is that these schemes computesmoother solutions then ENO-schemes. We test WENO-schemes and concludethat even then some smoothing is still necessary.In our approach we do not use a smoothing procedure directly during theupdate or the re-initialization step. The smoothing is achieved by the calcu-lation of the curvature. We adopt the `continuous surface force model' fromBrackbill, Kothe and Zemach [1] to Hele-Shaw 
ow.Near the interface, we compute the curvature with the MAC method, see [1].The curvature is computed by � = r � n̂ with n̂(x) = r�(x)jr�(x)j .In our implementation we store the pressure at the grid points (i; j) and weneed the curvature at (i+ 12 ; j) and (i; j + 12 ).ni+ 12 ; j+ 12 = 0@ 12 �Fi+1; j�Fi; jhx + Fi+1; j+1�Fi; j+1hx �12 �Fi; j+1�Fi; jhy + Fi+1; j+1�Fi+1; jhy � 1A ; (17)ni; j =  Fi+1; j�Fi�1; j2hxFi; j+1�Fi; j�12hy : ! (18)The normals ni; j can also averaged over the surrounding cell centered normalslike in the ALE schemes. The curvature is computed by�i+ 12 ; j = 1hx 0@nx i+ 12 ; j���ni+ 12 ; j��� � nx i; jjni; j j1A+ 1hy 0@nx i+ 12 ; j+ 12���ni+ 12 ; j+ 12 ��� � nx i+ 12 ; j� 12���ni+ 12 ; j� 12 ���1A .(19)3.2. Re-Initialization (standard way)When the update step (16) is performed many times, it may happen, thatthe gradient of the level set function near the zero level becomes large orsmall in absolute value. Therefore, re-initialization has to change the gradientof the level set function near the interface without changing its zero level.The standard method for re-initialization is based on solving of the followingequation [4] to a steady-state:@tF = sgn(F0)(1� j rF j); (20)F (x; y; 0) = F0(x; y): (21)Here, sgn(F) denotes the sign function. The steady-state solution of thisequation has the same zero level as F0(x; y) and it satis�es j rF j= 1.



Some numerical aspects of the level set method 145There are many di�culties concerning the numerical solution of the problem(20)-(21). The most important problems are:� conservation of mass� smoothness of the function F(x,y,t)Mass will be conserved better if high-order ENO discretization schemes areused for both equations (16) and (20). By our simulations we recognize thateven by using high-order ENO schemes mass can be lost. Especially, this mayhappen if phases change topology. Therefore, we should use some correction-procedures for mass-conservation. One possibility will be discussed below.The most important advantage of the level set method is that no explicitinformation about the interface is needed. The numerical experiments show,that the accuracy of the method cannot be further improved if the positionof the zero level is not explicitly used during re-initialization.3.3. Extrapolation method for the re-initializationWe propose a new re-initialization procedure, which leads to better conserva-tion of mass and smoothness the level set function. The main steps are thefollowing:� the re-initialization is done by equation (20) only on one side of the interface(inside)� we extrapolate the corresponding values of the level set function which areoutside and adjacent to the interface in such a way, that the position of theinterface does not change (see �gure 1)This idea can be used in di�erent versions. In one version the position ofthe interface is found along the coordinate lines. A better method can beachieved, when the position of the zero level is searched and �xed in normaldirection to the interface with respect to the surrounding grid points.PSfragreplacements xnew interfaceold interface� xi xi+1�k(xi)�k+1(xi)�k(xi+1)�k+1(xi+1)
Figure 1. Extrapolated value of the level set function F k+1(xi+1).The proposed method gives better mass conservation as the standard re-initialization. In �gure 2 one can see, that also the smoothness of the levelset function is improved.
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Figure 2. Curvature of the Interface, left: original method, right: modi�ed method3.4. Update in time and Mass ConservationFor the update in time we use equation (16) and an TVD Runge-Kutta methodas described in [6]. If the free boundary consists only of one connected contour,mass-conservation can be avoided by using of high-order ENO or WENOschemes. The problems occur after changes in topology. Then a correction ofthe level set function needed. A very coarse solution is achieved as follows. Weadd at all points to the level set function a small constant value �. In this casethe gradient of the level set function does not change. The constant � can bechosen in such a way, that the mass after the re-initialization is approximatelyequal to the mass at the beginning:� = M0 �M(t)M�h �M(t)h:HereM0 is the mass at the beginning,M(t) is the actual mass, h is the grid-constant, M�h is the mass by adding the value +h to the level set function ifM0 �M(t) and adding �h otherwise.The mass-correction need not to be done, if the proposed re-initializationprocedure is used.4. NUMERICAL RESULTSThe level set method is an universal method. When the update in time andthe re-initialization is correctly implemented, then this method can be usedfor di�erent problems. We have tested the proposed methods with di�erentinterface problems in Hele-Shaw Cells and also for 2D Stokes 
ow. However,in this work we present only solutions for Hele-Shaw 
ow.



Some numerical aspects of the level set method 1474.1. Contraction of a disturbed circleThe two 
uids of viscosity �0 and �1 are separated by an interface which isgiven in cylindrical coordinates byI(�; '; t) = 1 + �(t) sin(n'); (22)where the inner 
uid has the number 1 and the other the number 0. Our aim isto get an estimation for �(t). Therefore, we solve a simpli�ed problem, wherethe curvature is approximated by second order derivatives of the functionwhich de�nes the interface. The interface conditions are given by the jump inthe pressure [p] � ��(t)n2 sin(n') (23)and by the continuity of the velocity in normal direction[v�] = 0. (24)We compute the solutions of equations (6, 23, 24) in an in�nite large Hele-Shaw Cell without external forcesp0 = �� k1 n2�(t)��n sin(n')k0 + k1 ; (25)p1 = � k0 n2�(t)�n sin(n')k0 + k1 : (26)With an initial value �0 the ordinary di�erential equation for �(t) @I@t = vj�=1can be solved, and we obtain a solution:�(t) = �0e�ct; (27)c = � k1 k0 n3k0 + k1 : (28)The Interface between two 
uids is given by the zero level of the level setfunction F , see �gure 3.We have compared the estimated contraction rate with our numerical re-sults, see �gure 4. The values of the parameters are k0 = 10, k1=1, � = 0:001.In �gure 4 one can see the contraction rates for di�erent n = 6; 8 and the theo-retical estimates. A rather good agreement can be observed. It is important toremark here, that an unsuitable re-initialization procedure can lead to wrongdependencies for the perturbation �.
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Figure 3. Level Set functions and the zero level for di�erent times t=0, 5, 10, 254.2. Instability of small stripesSeveral authors consider the instabilities of small stripes under some initialperturbations, see [2; 3]. For the theoretical analysis we consider an in�nitelarge Hele-Shaw cell with a given velocity v0 in x direction. The two 
uids ofviscosity �0 and �1 are separated by two interfacesI�(t) = �d+ v0t� a(t) cos(ny); (29)I+(t) = d+ v0t+ b(t) cos(ny):where the 
uid inside the stripe has the number 1 and the other the number0. v0 is the velocity in x direction at in�nity.The interface conditions are given by the jump in the pressure, where weapproximate the curvature by n2 cos(ny),[p]I� = �a(t)n2cos(ny); (30)[p]I+ = �b(t)n2cos(ny)and the continuity of the velocity in normal direction[vx]I� = 0; [vx]I+ = 0. (31)
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Figure 4. Theoretically (thin lines) and numerically (thick lines) dependence of the dis-turbance � in time t (the grid size is 100x100)We computed the solutions of (6, 31, 31) with an exponential ansatz usingMaple. With an initial value � for a(0) and b(0) the system of ordinarydi�erential equations for a(t) and b(t)v0 �� ddta(t)� cos(ky) = vjI� ; (32)v0 +� ddtb(t)� cos(ky) = vjI+can be solved, and we obtain a solution of the forma(t) = �e�
t+ (�� �)e
t; (33)b(t) = �e
t+ (�� �)e�
t:Since the expressions for � and 
 are rather complicate, we plot the solutiona(t) and b(t) for special parameter values in �gure 5. We observed the samequalitative behavior in our numerical experiments. The amplitude of the dis-turbance on the left interface increases, while the amplitude of the disturbanceon the right interface decreases and changes its sign.Our analysis is only an approximation for small disturbances. Therefore,we cannot estimate the time of the topology changes.Using the numerical method we solve the following problem. The domain isde�ned by x 2 [�2; 4] and y 2 [�2; 2]. The parameters are as follows: k0 = 10,k1=1, � = 0:0001, n = 3, a = b = 0:05, d = 0:25. The boundary conditionsare given by: p jx=�2= 0:2, p jx=4= 0, and @p@x jy=�2. The contact angle �between the more viscous liquid and the boundaries by y = �2 is assumed tobe � = 95�.In �gure 6 we show the interface at di�erent times. The �rst �gure showsthe interface at the beginning. In the second and third �gure the disturbance
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t=0.0 t=1.0 t=2.2 t=4.4Figure 6. Change of the topology4.3. Mass ConservationIn the experiments with the disturbed circle we observe a good mass conser-vation, see the left picture in �gure 7. The right picture in that �gure showsthe behavior of the mass in the experiments with the stripe instabilities. Inthe case of topological changes we observe a larger loss for the mass but withour mass correction the mass remains constant.5. CONCLUSIONSIn this work a new algorithm based on the level set method for the solutionof problems concerning two-phase 
ow in Hele-Shaw cells has been proposed.One uses a modi�ed formulation of the problem, where the interface betweentwo phases is smoothed.For Hele-Shaw 
ow including surface tension e�ects special attention mustbe spend to the curvature. Even the usage of high-order ENO or WENO



Some numerical aspects of the level set method 151
0.9880.990.9920.9940.9960.99811.002

0 20 40 60 80 100

WENO 100extrapolation
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