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ABSTRACT

Many practical applications imply the solution of free boundary value problems. If the
free boundary is complex and can change its topology, it will be hard to solve such
problems numerically. In recent years a new method has been developed, which can
handle boundaries with complex geometries. This new method is called the level set
method. However, the level set method also has some drawbacks, which are mainly
concerning conservation of mass or numerical instabilities of the boundaries.

Our aim is to analyze some aspects of the level set method on the basis of two-phase flow
in a Hele-Shaw cell. We investigate instabilities of two-phase flow between two parallel
plates. A solution of the linearized problem is obtained analytically in order to check
whether the numerical schemes compute reasonable results.

The developed numerical scheme is based on finite difference approximations and the level
set method. The equations of two-phase Hele-Shaw flow are written in a modified
formulation using the one-dimensional Dirac delta-function. Since the level set function is
not smooth enough after re-initialization, special attention during the computation of
curvature is needed.

We propose a method that can solve the problems for two-phase Hele-Shaw flow with
changing topology. The numerical solution shows good agreement with the analytical
solution of the linearized problem. We describe the method below and analyze the results.

1. INTRODUCTION

Hele-Shaw cells are interesting objects in hydrodynamic and the information
about processes there can be important for different applications. Moreover,
the simulation of Hele-Shaw cells is a challenging task for numerical methods.
Here can be found difficulties which occur also in free boundary value prob-
lems for the Navier-Stokes equations. Qur experience show that the level set
method is harder to use in the case of Hele-Shaw flow as in the case of Stokes
flow. Hele-Shaw flow has also similarities with flow in porous media, there-
fore, new results in this area can give a better understanding of the processes
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in porous materials.

Numerical methods for Hele-Shaw flows are discussed in several papers. An
overview is given in [11]. We will concentrate our attention on the instabilities
of two-phase flow with different viscosities in Hele-Shaw cells, where the flow
is driven by surface tension and a pressure difference. Very often in literature
only one of these aspects is analyzed. We are interested in the interaction of
surface tension and the viscous forces on the interface, which separates two
phases.

If surface tension is taken into account, information about the local cur-
vature k of the interface will be needed. This parameter reinforce the non-
linearity of the free boundary problem for two phase flow. Some analytical
estimates for such problems can be achieved by simplifications of the cur-
vature term. The full problem can be solved by numerical methods. Here
different approaches can be used. Recent results show, that finite differences
in combination with the level set method can compete with methods based
on integral equations [9].

We develop a variant of the level set method for Hele-Shaw flow, which can
also be used in the case of disruption and coalescence in every phase.

2. MATHEMATICAL MODEL

Mathematically, two-phase flow in Hele-Shaw cell can be described by a free
boundary value problem. When the speed of motion # and the distance be-
tween plates d is small enough, then it can be assumed [8], that:

where p is the pressure, K = % and p is the viscosity. In this approxi-
mation the process is assumed to be quasi-stationary and at every time step
the pressure fulfills an elliptic equation. All equations are assumed to be in-
dependent of time. Only the motion of the interface is time-dependent. In
the level set approach the interface I' is defined as the zero level of a level set

function F(x,y,t):
I'=A{(z,y): F(z,y,t) = 0}. (2)

In order to investigate the flow in the domain Q, let the level set function
divide € into two parts @ = Q+ [JQ—, where

Ot = {(z,y) € Q: F(z,y,t) > 0},
O = {(r,y) € Q: F(z,y,t) <0}.

Every part corresponds to an appropriate phase. We denote the outer bound-
ary of the domain 0 by 9.

Since we consider two phases with different viscosities, the coefficient K has
a jump on the interface. Therefore, additional coupling conditions are needed.
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One condition is the continuity of the flux on the interface:

and the other is the jump condition for the pressure on the interface, which
is given by the Laplace-Young equation:

[plr = ok. (4)

Here p,, denotes the directional derivative of the pressure in normal direction
to the interface, o is the surface tension and « is the curvature of the interface.
We solve the problem in a rectangular domain:

Q= {(,y) : 2 € [a,bl,y € [e,d]}. ()

The standard formulation of the problem can be given as follows:

y=d
V. (k(z,y)Vp) = 0, in Q, (6)
L kpale = O, (7)
: [plr = ok, (8)
x=a x=b p‘z:a = Po, (9)
Ple=s = 1, (10)
Pn ‘y:C = 0, (11)
Pnly=a = 0, (12)
HF+0-VF = 0,inQ, t>0, (13)
y=¢C F(z,y,0) = Fy(z,y). (14)

Here pg, p1 are given constants, Fy(z,y) is a given function and

_ KT if (wy) € QF,
k(e.y) = { k= if (x,y) e .
r
The brackets in [f]r denote the jump on the interface for some function f.

2.1. The modified formulation of the problem

In [4], a new level set formulation for two-phase flow in the case of Navier-
Stokes equations is given. The idea is to use in the Navier-Stokes equations the
one-dimensional Dirac delta function in order to describe the jump condition
of the pressure.

Similarly to [4; 10] we can get a modified formulation for our problem
without explicit jump conditions in the case of porous media

V- (k(Vp —akpd(F)VF)) =0, (15)
OF +v-VF =0. (16)
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where

k(z,y) =k + (kT — k" )H(F(z,y,t)).

Here, §(F) is the one-dimensional Dirac delta-function and H(f) is the
one-dimensional Heaviside function. The curvature kr in this case is the
curvature of the level set function F'(z,y,t) at the point (z,y,t). The prob-
lem (15)-(16) must be completed with corresponding initial and boundary
conditions.

3. NUMERICAL METHOD

We will solve the modified problem by finite differences. In the case of ex-
plicit time-steeping equation (15) is a linear elliptic equation for the pressure
with variable coefficients and it can be approximated by standard difference
schemes [7]. If the pressure in known, the speed ¥ at every grid-point can also
be estimated. These values can be used in equation (16), which is a hyperbolic
equation for the level set function F(z,y,t). Therefore, the update in time
for the level set function can be done by high-order ENO-schemes [6]. The
main steps of the numerical method are the following;:

1. Initialization of the level set function
2. Solving of the equation for pressure p and estimation of the velocity ¢

3. Update in time of the level set function by the discrete analogous of
equation (13)

4. Re-initialization of the level set function
5. Repeat from step 2.

All steps in the method are very important. The numerical method can
work only if these steps are co-ordinated to each other. Since the free bound-
ary is defined by the zero level of the function F(z,y,t), the properties of
the discrete level set function are crucial for the method. The function F
is only modified during the update-step (step 3) and during re-initialization
(step 4). These steps must be implemented so that the following properties
can be guaranteed:

e stable motion of the interface
e conservation of mass for every phase

Success of the simulation is guaranteed only if all steps are correctly done. We
will explain which stages are most important for the algorithm in our opinion.

3.1. Calculation of the curvature

For a discretization of equation (15) the curvature xr must be discretized,
too. If we want to use central differences for the approximation of the cur-
vature, the discretized level set function must be smooth enough. Numerical
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experiments with the standard equation for re-initialization (20) show, that
even third-order ENO schemes do not guarantee a sufficiently smooth level
set function. Therefore, in [4] a special smoothing procedure has been used
to enforce smoothness of the level set function. In [5] weighted ENO-schemes
(WENO) are investigated and a main result is that these schemes compute
smoother solutions then ENO-schemes. We test WENO-schemes and conclude
that even then some smoothing is still necessary.

In our approach we do not use a smoothing procedure directly during the
update or the re-initialization step. The smoothing is achieved by the calcu-
lation of the curvature. We adopt the ‘continuous surface force model’ from
Brackbill, Kothe and Zemach [1] to Hele-Shaw flow.

Near the interface, we compute the curvature with the MAC method, see [1].

The curvature is computed by £ = V - 1 with n(z) = \gigig\'

In our implementation we store the pressure at the grid points (i,7) and we
need the curvature at (i + 3,7) and (i,j + 3).

1 (Fiy1,,—Fij +Fi+1,j+17Fi,j+1
2 ha ha
n'+l '+l = N (17)
it+3,Jt3 1 (Fij+1—Fij +Fi+1,j+1*Fi+1,j ’
2 hiy hy
Fiy1 ;—Fi 15
_ 2h,
nij = Fi j41—Fi j 1 (18)
2h, :

The normals n; ; can also averaged over the surrounding cell centered normals
like in the ALE schemes. The curvature is computed by

1T [ Maitl,j e 1 [ il j4l Tgigl j-1
Kiyl,j = 73— - -
2 hy n, hy

Ritd, j+% Mitd, j—%

Mity, j‘

3.2. Re-Initialization (standard way)

When the update step (16) is performed many times, it may happen, that
the gradient of the level set function near the zero level becomes large or
small in absolute value. Therefore, re-initialization has to change the gradient
of the level set function near the interface without changing its zero level.
The standard method for re-initialization is based on solving of the following
equation [4] to a steady-state:

O F sgn(Fo)(1— | VF ), (20)

Here, sgn(F) denotes the sign function. The steady-state solution of this
equation has the same zero level as Fy(z,y) and it satisfies | VF |= 1.
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There are many difficulties concerning the numerical solution of the problem
(20)-(21). The most important problems are:

e conservation of mass

e smoothness of the function F(x,y,t)

Mass will be conserved better if high-order ENO discretization schemes are
used for both equations (16) and (20). By our simulations we recognize that
even by using high-order ENO schemes mass can be lost. Especially, this may
happen if phases change topology. Therefore, we should use some correction-
procedures for mass-conservation. One possibility will be discussed below.

The most important advantage of the level set method is that no explicit
information about the interface is needed. The numerical experiments show,
that the accuracy of the method cannot be further improved if the position
of the zero level is not explicitly used during re-initialization.

3.3. Extrapolation method for the re-initialization

We propose a new re-initialization procedure, which leads to better conserva-
tion of mass and smoothness the level set function. The main steps are the
following;:

e the re-initialization is done by equation (20) only on one side of the interface
(inside)

e we extrapolate the corresponding values of the level set function which are
outside and adjacent to the interface in such a way, that the position of the
interface does not change (see figure 1)

This idea can be used in different versions. In one version the position of
the interface is found along the coordinate lines. A better method can be
achieved, when the position of the zero level is searched and fixed in normal
direction to the interface with respect to the surrounding grid points.

P
BF (x441) old interface
B (2i41) K
xr
T ‘\ Tit1
DrHL (z;) new interface
¥ (2:)

Figure 1. Extrapolated value of the level set function F*¥!(z;1;).

The proposed method gives better mass conservation as the standard re-
initialization. In figure 2 one can see, that also the smoothness of the level
set function is improved.
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Figure 2. Curvature of the Interface, left: original method, right: modified method

3.4. Update in time and Mass Conservation

For the update in time we use equation (16) and an TVD Runge-Kutta method
as described in [6]. If the free boundary consists only of one connected contour,
mass-conservation can be avoided by using of high-order ENO or WENO
schemes. The problems occur after changes in topology. Then a correction of
the level set function needed. A very coarse solution is achieved as follows. We
add at all points to the level set function a small constant value e. In this case
the gradient of the level set function does not change. The constant e can be
chosen in such a way, that the mass after the re-initialization is approximately
equal to the mass at the beginning;:

My — M(t) b
e=———""h.
My — M(t)
Here M, is the mass at the beginning, M (¢) is the actual mass, h is the grid-
constant, M4y is the mass by adding the value +h to the level set function if
My > M (t) and adding —h otherwise.

The mass-correction need not to be done, if the proposed re-initialization
procedure is used.

4. NUMERICAL RESULTS

The level set method is an universal method. When the update in time and
the re-initialization is correctly implemented, then this method can be used
for different problems. We have tested the proposed methods with different
interface problems in Hele-Shaw Cells and also for 2D Stokes flow. However,
in this work we present only solutions for Hele-Shaw flow.
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4.1. Contraction of a disturbed circle

The two fluids of viscosity g and uq are separated by an interface which is
given in cylindrical coordinates by

I(p,p,t) =1+ €(t) sin(ngp), (22)

where the inner fluid has the number 1 and the other the number 0. Our aim is
to get an estimation for €(t). Therefore, we solve a simplified problem, where
the curvature is approximated by second order derivatives of the function
which defines the interface. The interface conditions are given by the jump in
the pressure

[p] = oe(t)n? sin(ny) (23)
and by the continuity of the velocity in normal direction

[v,] = 0. (24)

We compute the solutions of equations (6, 23, 24) in an infinite large Hele-
Shaw Cell without external forces

ok n2e(t)p " sin(ny)

= 25

Do ko + k1 (25)
o ko nZe(t) p™ sin(ny)

= . 26

P ko + Ky (26)

With an initial value €g the ordinary differential equation for e(t) 2F = v|,_;
can be solved, and we obtain a solution:

e(t) = ee (27)
g kl ko n3

= — = 28

c k[) +k1 ( )

The Interface between two fluids is given by the zero level of the level set
function F', see figure 3.

We have compared the estimated contraction rate with our numerical re-
sults, see figure 4. The values of the parameters are kg = 10, ky=1, 0 = 0.001.
In figure 4 one can see the contraction rates for different n = 6, 8 and the theo-
retical estimates. A rather good agreement can be observed. It is important to
remark here, that an unsuitable re-initialization procedure can lead to wrong
dependencies for the perturbation e.
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Figure 3. Level Set functions and the zero level for different times t=0, 5, 10, 25

4.2. Instability of small stripes

Several authors consider the instabilities of small stripes under some initial
perturbations, see [2; 3]. For the theoretical analysis we consider an infinite
large Hele-Shaw cell with a given velocity vg in = direction. The two fluids of
viscosity po and p; are separated by two interfaces

I (t) = —d+wvet—a(t)cos(ny), (29)
IT(t) = d+wvot+ b(t)cos(ny).
where the fluid inside the stripe has the number 1 and the other the number
0. v is the velocity in z direction at infinity.

The interface conditions are given by the jump in the pressure, where we
approximate the curvature by n? cos(ny),

Wl,- = oa(tncos(ng), (30)

and the continuity of the velocity in normal direction

[ve];- =0, [va]+ = 0. (31)
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Figure 4. Theoretically (thin lines) and numerically (thick lines) dependence of the dis-
turbance € in time t (the grid size is 100x100)

We computed the solutions of (6, 31, 31) with an exponential ansatz using
Maple. With an initial value a for a(0) and b(0) the system of ordinary
differential equations for a(t) and b(t)

v0<%a(t)> cos(ky) = v, (32)
v0+<%b(t)> cos(ky) = vl

can be solved, and we obtain a solution of the form

a(t) = fe '+ (a - p)e’, (33)
b(t) = pBe''+  (a— Ble M.

Since the expressions for 3 and  are rather complicate, we plot the solution
a(t) and b(t) for special parameter values in figure 5. We observed the same
qualitative behavior in our numerical experiments. The amplitude of the dis-
turbance on the left interface increases, while the amplitude of the disturbance
on the right interface decreases and changes its sign.

Our analysis is only an approximation for small disturbances. Therefore,
we cannot estimate the time of the topology changes.

Using the numerical method we solve the following problem. The domain is
defined by = € [-2,4] and y € [—2,2]. The parameters are as follows: kg = 10,
ki1=1, 0 = 0.0001, n = 3, a = b = 0.05, d = 0.25. The boundary conditions
are given by: p [,=_2= 0.2, p |,—4= 0, and % |y=+2. The contact angle 6
between the more viscous liquid and the boundaries by y = +2 is assumed to
be 6 = 95°.

In figure 6 we show the interface at different times. The first figure shows

the interface at the beginning. In the second and third figure the disturbance
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a(t) b(t)

Figure 5. Solutions for a and b

of the right interface changes its phase relatively to the left interface. The
right figure shows the interface after the change in topology.

-1 “a.5 ) 2.5 1 - -0 v 0.t = &l -

t=0.0 t=1.0 t=2.2 t=4.4

Figure 6. Change of the topology

4.8. Mass Conservation

In the experiments with the disturbed circle we observe a good mass conser-
vation, see the left picture in figure 7. The right picture in that figure shows
the behavior of the mass in the experiments with the stripe instabilities. In
the case of topological changes we observe a larger loss for the mass but with
our mass correction the mass remains constant.

5. CONCLUSIONS

In this work a new algorithm based on the level set method for the solution
of problems concerning two-phase flow in Hele-Shaw cells has been proposed.
One uses a modified formulation of the problem, where the interface between
two phases is smoothed.

For Hele-Shaw flow including surface tension effects special attention must
be spend to the curvature. Even the usage of high-order ENO or WENO
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Figure 7. Area loss by conventional re-initialization using equation (20) and the new
extrapolation method for the interface. The evolution of area enclosed by the zero level set
is plotted over the number of iterations.

schemes does not allow to apply central differences for computing the curva-
ture.

The numerical results are in good agreement with analytical solutions of
some linearized problems for Hele-Shaw flows. Formally, the method allows to
simulate processes with changing topology, but here additional investigations
are also needed.
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