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ABSTRACT

We will consider the exact finite-difference scheme for solving the system of differential
equations of second order with piece-wise constant coefficients. It is well-known, that the
presence of large parameters at first order derivatives or small parameters at second order
derivatives in the system of hydrodynamics and magnetohydrodynamics (MHD) equations
(large Reynolds, Hartmann and others numbers) causes additional difficulties for the
applications of general classical numerical methods. Thus, important to work out special
methods of solution, the so-called uniform converging computational methods.This gives a
basis for the development of special monotone finite vector-difference schemes with
perturbation coefficient of function-matrix for solving the system of differential equations.
Special finite-difference approximations are constructed for a steady-state boundary-value
problem, systems of parabolic type partial differential equations, a system of two MHD
equations, 2-D flows and MHD-flows equations in curvilinear orthogonal coordinates.

1. 1-D LINEAR SYSTEM

We start with a simple example of one dimensional (1-D) linear system of m
differential equations of second order:

Lu = 0(A\0u/0x)/0z — adu/0z = f, (1.1)

where z € (0,1), A > 0,a is the matrix, u,f are vectors. Let the coefficients
of \,a,f are piece-wise continuous in the interval (0,!) and the nonuniform
grid contains the discontinuity points of coefficients. The vector-function u
and the flux vector-function Adu/0z are continuous .
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We assume that the boundary conditions can be written as
VoA 0u/0z — apu = —ag®Py, =0 (1.2)

nAnou/dr + ayu=an®;, z=I, (1.3)

where vy = 0 or v; = 0 for the Dirichlet boundary conditons (u = &g at z = 0
oru=%®; at z=1);

vop = 1 or v, = 1 for the Neumann boundary conditions (ap = 0 or ay = 0)
or general form of boundary conditions;

ag > 0,any > 0,1, ANy are the matrix, &y, ®; are the vectors of order m.

2. 3-POINT EXACT VECTOR-DIFFERENCE EQUATIONS

Approximation of the differential problem is based on the conservation law
approach of the finite volumes method [4].
We consider the nonuniform grid with blocks centered at the grid points

zj, j=0,N, (xo=0,znx=1).

We will refer to the endpoints of the interval about the point z; as x;+o.5.
This interval (zj_o.5,%;+0.5) is refered as the control volume associated with
the grid point z; (the j-th cell). To derive a difference equation associated
with the grid point z; we integrate the self-adjoint form of vector differential
equation (1)

O(A*0u/0x)0r = G(x) (2.1)

in the intervals (zj_o.5,%j+0.5) :

Tj Tj+40.5
Wj+0_5 — Wj_0_5 = / G]dZ + / Gj_HdZ, (22)

Zj—0.5 Z;

where

Wiios =W |o=z;i05, Tjtos = (T +2541)/2, hj=z; —x; 1,

W(z) = A*0u/0z, \* = J\,G = Jf,J(z) = exp(—/ A tadt).

Tj

This is the integral form of the conservation law for the interval (x;_o.5, Zj+0.5)-
In the classical formulation of the finite volumes method [4], it is assumed that
the vector flux terms W o 5 are approximated by the finite differences. Then,
the corresponding difference scheme is not exact for given vector-functions G;
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even in the case of piece-wise constant coefficients of A, a, f. We have an op-
portunity to derive the exact difference scheme in this case. We integrate
equation (4) from z; o5 to z € (2;_1,2;):

W — Wj_0_5 = / G]df
Tj—0.5

Dividing this expression by A\* and integrating from z;_; to z; yields
u; — o = (47) 7' W05 + By,

where

(A]?)‘lz/J (A)~da, Bj:/] (A*)‘ldm/ G,de,

J J j—0.5

and u;,u;_; represent the values of the vector-function u at ;,x;_1.

Hence
Wj_0_5 = AJ_ (llj - 11]'_1) - AJ_B]

Similarly, the flux term W5 is given by
Wiios = Al (ujpn —uj) — A7 By,

In order to derive a 3-point exact vector-difference equations associated with
the central grid point z; we want to apply vector-equation (5) in the form

hiduj = A7 (w0 — ) — A7 (0 —u;) =R;,  j=1N-1 (2.3)

where i; = 0.5(hj + hj1), and

R, — /_(1 e /:j()\*)_ldf)(}jda:

J

Tjt1 x )

+/ (1=Af, [ ()71 Gjpade.
zj z;

If the values of the parameters A, a, f of equation (1) are equal to Aj_o.5,a;—0.5,

fi_05 and Ajyo.5,a5+10.5, 105, in the intervals (x;_1,2;), (2, 2j41) respec-

tively, then

Ay = Mg(=), Afy = G22g(Bi1), (2.4)

hjt1
Rj = hj1r(Bjs1)fjr0.5 + hir(=B5)E 0.5,
where
g(s) = s(exp(s) — E) ", r(s) = s (E — g(s))
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are the functions of the matrix s = A"!ah, F is the identity matrix of order
m. In the case of a uniform grid and constants coefficients A, a,f we have
hy = hisr = hyBj = Bya1,g(£s) = 7(s) £ 5/2,7(s) + r(—s) = E, where
~v(s) = 0.5s coth(0.5s). The matrix-functions g, 7,y can be calculated on the
spectrum of the matrix s [5]. Since the matrix-function g(s) associated with
the matrix s has nonnegative eigenvalues, we have A]-_ > O,A;'+1 > 0 and
the corresponding vector-difference scheme is monotone. This scheme can be
solved by vector-factorization method for tridiagonal systems. The presence
of the matrix-functions g(s),r(s) in the case of piece-wise constant elements
of the matrix a, A and vectors f ensure the exact discrete approximation of
corresponding 1 - D boundary value problem.

3. 2-POINT EXACT VECTOR-DIFFERENCE EQUATIONS

We apply the integral form of the conservation law to the half interval (zq, zo.5)
for the approximation of the boundary condition (2) (9 = 1) in the form

W0_5 - WO - / . Gle, (31)
o

where
Wy =W |z=z0= Clo(llo - ‘I’o);Wo.s =W |z=z0,5 .

By integrating the equation (4) from xgs5 to € (xo,z1) and from zy to
x1, we can easily derive the following 2-point exact vector-difference equation
associated with the grid point o = 0:

hlAuo = Af(lll — 110) — Oé()(’U,O — (I)()) = R(), (32)

where A;r = )\0.5/hlg(ﬁ1), ﬂl = )\[;El—)agf,hl,

RO:/“(I—AT /I(A*)_ldf)(}ldx

0 0

and ug, u; represent the values of the vector-function u at zg, ;.
Similarly for the boundary condition (3) we obtain the 2-point exact vector-
difference equation associated with the grid point zn =1

hNAuN = —aN(uN — @1) — AR{(“N — llel) = RN, (33)

where AN = Av_oshN'9(—6N), By = AN_osan—o0shnN,

Ry :/ N (1 _A;,/ N()\*)‘ldf)GNdm = hnr(=Bn)EN-05

N-1
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and uy_; represents the value of the vector-function u at zn_1.

Therefore, the vector-difference scheme (6),(9),(10) is monotone (ap > 0,an >

0,47 >0, A;F_H > 0) and has the unique solution.

4. 1-D NONLINEAR SYSTEM AND 1-D TIME DEPENDING
SYSTEM

The system of m nonlinear differential equations (1) with the coefficients
A, a,f depending on z,u can be approximated in the form (6),(7), where
Aj+0.5,@j+0.5, fj+0.5 denote the discrete approximation of A, a,f in the corre-
spondigs intervals (z;_1,2;), (z;,2j+1). The truncation error of the vector-
difference equations is locally O(max |hj+1 — hj|). For the uniform grid we
obtain the accuracy of second order. The vector-difference scheme generalizes
the corresponding monotone difference scheme in the scalar case.

The nonlinear time-depending 1-D initial-boundary-value problem for
parabolic type system of m partial differential equations is in the form (1)-(3),
where u = u(z,t),f = du/0t — £* and the parameters A, a, f* are functions
depending on x, t, u. The corresponding discretized version of vector-equations
(1) for the monotone difference scheme is given in the form [6]

(u;-H'1 —uj)/T= UAll;-H_l + (1 —o)Au] + £, (4.1)
where uf, f7 denote the discrete approximations of u,f* at the grid point z;
and at the time t = ¢, = nt,n = 0,1,---,7 is the time step, o € (0,1) is
the weight-parameter of schemes, Au; are the vector difference expressions
of (6),(9),(10); j = 1,N — 1. If o # 0.5 then the truncation error of (11) is
locally of the first order in time, in case ¢ = 0.5 it is of the second order.
The stability condition in the case of constant coefficients and uniform grid
has the form

[[Allko(1 — o) max |y;] <1,

where v; = (p;/2) coth(u;/2), u; are the eigenvalues of the matrix s,j =
].,m,k'o = 27’/h2.

5. 2-D TIME DEPENDING SYSTEM

We consider the nonlinear time depending 2-D initial-boundary-value problem
for parabolic system of m partial differential equations in the bounded domain
D = {(z,y) : z € (0,1),y € (0,I*)}, has the form (1),where u = u(z,y,t),

f = 0u/0t — 0(A\0u/dy) /0y + a*Ou/dy — £*,

A > 0,a,a*, f* are matrix and vector functions depending on x,y, ¢, u.
The corresponding difference equations (11) can be rewritten in the form [6]

(u?jl — u?l)/T = aAu;{'iH +(1- U)Auzi + fi’jj,

(5.1)
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where u};,f; denote the disrete approximation of u,f* at the grid point
(xj,y;) and at time t = t,, = nr,

Awij =y A (Wi —wg) — Aja(wg — w1 )]+ Aa g, (5.2)
where

A= (7)) 7 AT (W — ) — A% (g —ujim0)],

Xi—0.5,i Ajt0.5,i
Aji = %9(_ﬁj,i)>‘4j+l,i = ﬁg(ﬁjﬂ,i),

* >",'—0-5 * >",'+0-5 *
Aj,i = b2 ;l* g(_ﬂj,i)aAJ'7i+1 = 7]};* g(ﬂj,i+1)a
i i+l

Bji = Nj—05.4) "aj0sihj, B = Nji0s) "a}i o5k,

h: :yi_yi—lah;»l = Yit+1 _yla.] = I,N—l,iZI,N* _LZ/N* :l*-

We again can estimate the truncation error in the space
O(max|hyiy — hy| +max [Z,, — hil),

or O(h?+(h*)?) in the case of the uniform grid with steps h, h*. The difference
scheme with piece-wise constant functions A, a,a*, f* is not exact.

6. 2D STEADY-STATE SHEAR FLOW

The 2D stady state shear flow of viscous incompressible electrically-conducting
liquid and magnetic induction field can be described by the system of two
linear MHD equations (the Hunt type equations) [7]:

Au + Halcos(ag)OH [0z + sin(ag)0H/0y] = Revdu/dy
(6.1)
AH + Halcos(ag)Ou/0x + sin(ag)0u/0y] = RenvOH /0y,

where the functions u, H are the corresponding unknown components of ve-
locity and magnetic induction vectors, Re, Re,,, Ha are the Reynolds, mag-
netic Reynolds and Hartmann numbers, g is the angle between the direc-
tions of z axes and external magnetic field, v is the given function of y-
components of velocity vectors. It follows from (12), (13) that the vectors
u= (u,H),f* = (0,0), the matrix A\ = E,

— 0 cos(ayg) . Rev —Hasin(ag)
“= “ cos(ayg) 0 » % =\ -Ha sin(ayg) Renv '
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Then the difference scheme (0 = 0,7 = 00) on the uniform grid can be written
in the following form

Alljﬂ' = ’)/592611]'7@' + ’Y*(Szlljﬂ' — G,(Smlljﬂ' — a*éyum =0, (62)

y = go O N = Gyl a1,2
0 go ’ a2 Qa2:2 ’

a1,z = Hasin(ao)(g(p2) — g(p1))/ (12 — p1),

where

a1,1 = [g(p2)(p2 + Renv) — g(p1) (1 + Repmv)]/(p2 — 1),
az,2 = [g(p1)(p2 + Remv) — g(p2) (1 + Remv)]/(p2 — pa),
p1,2 = pr = —0.5[v(Re + Re,,) £ Vd],d = v*(Re — Re,,)? + 4Ha? sin®(ay),
() = 0.5h" py coth(0.5h" 1y ), (k = 1;2),

go = 0.5Ha cos(ap) coth(0.5Ha cos(ap)),

du, 6%u denote the central difference expressions for the first and second order.
The difference equations (15) have been applied for large values of parameters
Re, Rey,, Ha [7].

7. 2-D HYDRODYNAMIC SYSTEM

The subject of examination is the finite difference approximations of the flow
equations describing 2-D incompressible flow in curvilinear orthogonal coordi-
nates (¢1, g2, g3) in the case when it is possible to introduce the stream function
1 of the liquid. The planar flow is governed by the Navier-Stokes equation
in the Crosso-Lamb form in terms of stream function 1, g3-components of
vorticity ws and velocity vs (all derivatives along the coordinate g3 are equal
to zero). Elimating the pressure, we obtain the system of two equations for
the functions w3 and vz with the ’source’ terms of the form bvs, dws, where the
functions b, d can change their signs. This causes difficulties in the derivation
of monotone difference schemes, since the maximum principle is not valid for
such equations. Using the transformation u = L Yws,w = Lsvs and taking
into account the relation

6(L1_1L28L3/8q1)/6q1 + 6(L2_1L16L3/8q2)/8q2 =0 (71)
the equations for u, w do not contain source terms and therefore, are suitable

for obtaining a monotone vector-difference scheme (12,13) [8]. Here, L1, L, L3
are the Lames coefficients of the orthogonal-coordinates transformation. Let
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us note that in any orthogonal coordinate system, the relationship (16) is
valid. The 1-D steady-state model of two equations of this system is in the

form (1), where
_ (b O (a4 ¢
A= < 0 bQ ) ’ “= ( 0 az )

are the matrixes of the second order depending on variable x,b; > 0,b2 > 0,
u, f are the vectors with two components (u,w) and (f1, f2).

For the finite-difference approximation of systems (1) on nonuniform grid
the system can be written in the following local selfadjoint form (4) and the
monotone vector-difference equations of 3-point scheme can be represented in
the form (6), where

u; = u(z)), f; = f(x;),R; = £ /1.

By calculation the matrix-function g(s) on the spectrum of the matrix s =
A lah we get

_( 9(k) by g(ky, k)R
9(s) = ( " Z(kz) )

where

9(k1,k2) = (9(k1) = g(k2))/ (k1 — k»), - lim g(ki, k2) = g/ (kr).
2 1
The presence of matrix- function g(s) in the case of piece-wise constant func-
tions of by, ba,a1,a2,¢ (f = 0) ensures the exact discrete approximation of
the boundary value problem for equation (1).

8. 2-D MHD SYSTEM

The class of axially symmetric or planar 2-D flow of viscous incompress-
ible electrically-conducting liquid can be described by the system of MHD-
equations in terms of six unknown functions in curvilinear orthogonal coor-
dinates (qi1,¢2,¢3) and in time ¢ : temperature T, stream functions of the
liquid ¢ and the magnetic field k, g3-components of vorticity ws, velocity v
and magnetic induction Bs (all derivatives along the coordinate g3 are equal
to zero). Elimating the pressure, we obtain three equations for the functions
v3, B3, w3 with the ’source’ terms of the form bvs, cBs, dws, where b, c,d are
the alternating sign functions. This makes the development of the monotone
difference scheme more complicated, since the maximum principle is not valid.
Using the transformation

u=L;'ws,w = Lavs, H = L;' B3
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and the relationship (16), we obtain the equations for uw,w, H which do not
contain source terms, therefore, they are suitable for obtaining monotone
vector-difference schemes (12,13) [8].

The 1-D steady-state model system is in the form (1),where

b1 0 0 ap C d
A= 0 b 0 |, a=| 0 a 0
0 0 b3 0 0 a3

are the matrixes of the third order depending on variable xz,b; > 0,0 >
0,b3 > 0, u,f —the vectors with three components (u,w, H) and (f1, f2, f3).
For the finite— difference approximation of systems (1) on nonuniform grid
with grid points z; the system can be written in the following local selfadjoint
form (4) and the monotone vector-difference equations of 3-point scheme can
be represented in the form (6). By calculation the matrix-function g(s) on
the spectrum of the matrix s = A\"'ah, we get

g(k1) cbytg(ky, ko)l dbytg(ky, ks)h
g(s) = 0 g(k2) 0 ,
0 0 g(k:s)

where

ki =aib;'h (i=1,2,3), g(k)=k/(exp(k) - 1),

g(k, k) = (g(k) — g(k))/(k — k), 1}132 g(k, k) = g'(k).

In the case of piece-wise constant functions by, bs, b3, a1, az,as, ¢, d, (f = 0) the
presence of the matrix- function g(s) ensures the exact discrete approximation
of boundary value problem for equation (1).

9. SOME APPLICATIONS

The main result of numerical modelling in continuum mechanics is the devel-
opment of effective special calculation methods for obtaining electromagnetic,
hydrodynamic and temperature fields with various boundary layers [7]. Spe-
cial finite-difference methods have been applied for the simulation of liquid
transport in electrolytic cell for aluminium production [9], in multilayered
fleece for describing the wetting-drying process [10],[11], for mathematical
modelling of the glass fibre material production[12],for the solutions of filtra-
tion and heat transfer problems in multilayer domains[13],[14].
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