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ABSTRACT

The piecewise polynomial collocation method is discussed to solve second kind Fredholm
integral equations with weakly singular kernels K (¢, s) which may be discontinuous at

s =d, d = const. The main result is given in Theorem 4.1. Using special collocation
points, error estimates at the collocation points are derived showing a more rapid

convergence than the global uniform convergence in the interval of integration available by
piecewise polynomials.

1. INTEGRAL EQUATION

Consider the linear integral equation
b
u(t) = /K(t,s)u(s)ds + f(t), 0<t<hb, (1.1)
0
where b € R and f:]0,b] - IR is a given continuous function. Throughout
this paper we shall suppose that the kernel K has the form

K(t,s) = a(t,s)k(t — s) (1.2)

where

(A1) the function (1) is m — 1 times (m > 1) continuously differentiable with
respect to 7 for 7 € [—b,b] \ {0} and such that the estimates

K@) < blrl = F, k=0,1,m -1, (1.3)
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hold with 0 < a < 1 and some positive constants by, b1,...,0m—1;

(A2) the function a(t, s) is m times continuously differentiable on [0, b] x [0, d]
and [0, b] x [d, b] independently, where d is a fixed point in the interval
0, 0).

Let C™(X), where X C IR, denote the space of m times continuously
differentiable functions z: X — IR. For 0 < a <1, m € IN, 0 < d < b, define

Eom = {u € C[0,b] N C™(0,d) N C™(d,b) :

. ) <o)
0<¢tgb t—(a+m—1) + |t _ d|f(a+m71) + (b _ t)f(oz+m71) ’

E*™ is a Banach space under the norm

[l | o = max [u(t)]+ @)
B = g MIT T, i avm—0 = g|-(a+m—1)  (b— )~ (atm—D)
t#d

It follows from w € E*™ that u € C[0,b] n C™(0,d) N C™(d,b) and for
0 <t <dandd<t<b the following estimates hold:

[u® ()] < e [t 4|t — g~ @+r=D 4 (p—p)=H=D] k=1, m,
(1.4)
where ¢y, ..., ¢ are some positive constants. Note also that C™[0,b] C E*™.

The following result (see [4; 6; 2]) states the regularity properties of solutions
of equation (1.1).

LEMMA 1.1. Let the assumptions (A1) and (A2) hold, and let f € E*™. If
integral equation (1.1) has a solution u € L'(0,b) then u € E¥™.

REMARK 1.If the function a(t,s) is continuous on [0,d] X [0,b] then the es-

timates (1.4) for the derivatives of the solution u(t) of equation (1.1) can be
specified (see [4]).

2. PIECEWISE POLYNOMIAL APPROXIMATION
Let N € N, r € R, r > 1. We introduce in the interval [0, d] the following
2N grid points

(.N): i Tg | = 1 N; 2.1
t] (N) 27.] 07 3 ? (')

o), =d—ty), j=1,...,N -1,
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and in the interval [d,b] 2N + 1 grid points

t =d+ (£) 554, j=0,1,...,N;

2N+j 2 (22)
N N N
th)ﬂ_b—th)] ji=1,...,N-1; N =b.

Here r > 1 characterizes the degree of the nonuniformity of the grid. If r =1
then the grid points (2.1) and (2.2) are uniformly located in the intervals [0, d]
and [d, b] respectively (and in [0,b] if d = b/2). If » > 1 then the grid points
{(2.1),(2.2)} are more densely located towards the end points of the intervals
[0,d] and [d, b].

We dermine the collocation points in the following way. We choose m points
M1, ...,Mm in the interval [—1,1]:

1< <p<...<ny <L (2.3)

By affine transformations we transfer them into the interval [tff}, tg-N)]:

Ny Mg+l (N N .
e =) - N ), g =1, mp =1, 4N, (2.4)
N N N) . .
Note that f](m) = fg('+%,1 = tg. ), ftm=-1,n,=1((=1,..., 4N —1).
For a continuous function u: [0, b] — IR we construct a piecewise polynomial
interpolation function Pyu:[0,b] — IR as follows: on every interval [¢ 5 1 gN)]
(j =1,...,4N), Pyu is a polynomial of degree not exceeding m — 1 and

(PNU)(é-(N)) (g(N))7 q:17"'7m; j:17"'74N'

Thus the interpolation function (Pywu)(t) is uniquely defined in every in-

terval [t S 1 EN)] (j =1,...,4N) separately and may have jumps if ¢ = tg-N),
j=1,...,4N—-1. If g, = —1, m = 1, then Pyu is a continuous function on

the interval [0,b]. We can define (Pyu)(t) by the formula

(Pru)(t) = S u(@M)eM @), te ™, e, j=1,... 4N, (2.5)

q=1
where <P§-f§) (t), t € [tEN}:tSN)], g = 1,...,m, are the polynomials of degree
m — 1 such that
N 1, p=gq
<P§q)(€](p))={0 p¢q}, p=1,...,m. (2.6)

Let us denote by Ex the range of the operator Py = PI(Vm). This is the
space of piecewise polynomial functions uy on [0,b] which on every interval

[t; 1 ;N)] (j =1,...,4N) are polynomials of the degree not exceeding m — 1.
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The approximation properties of Pyu on grid {(2.1),(2.2)} are considered
in [5] (cf. also [6; 7; 8]). These results can be summarized as follows.

LEMMA 2.1. Assume that u € E*™., Then

=) for1<r< -2,
|| — PyullL(0,) < const { h% forr > 1’—a (2.7)
where
d b—d
= n— 2.
hn = max{2N, 5N } (2.8)

3. COLLOCATION METHOD

We look for an approximate solution uy € Ey to integral equation (1.1). We
require that uy should satisfy the equation (1.1) at the collocation points
(2.4):

[uw) = K, sux(s)ds — f(t)] — 0,
t=g(M)

0 (3.1)

p=1,...,m, i=1,...,4N.
By the representation (2.5), we can find uy € Ey in the form
N) L(N)y .
="My, te 1N, 64N], =1, 4N,
q=1
where, as it follows from (2.6),

M =un(EN), g=1,...m; j=1,...,4N.

Now the collocation conditions (3.1) will take the following form of a system

(N )_ (f(N)).

which determines the coefficients ¢,
) = ZZ M L f€N), p=1,.,m; i=1,...,4N, (3.2)
j=1g¢q=1

where

o = /K 0,96 ).

If ;4 > —1 or i, < 1, then all collocation points §§f§) (¢ = 1,...,m,
j = 1,...4N) are different and there are 4mN collocation points. In this
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case the system (3.2) (system (3.1)) has 4mN = dim Ex equations and the
same number of unknows. If 7y = —1 and n,, = 1, then part of the col-
location points will coincide. The number of different collocation points is
[AN(m — 1) 4+ 1] = dim En and the system (3.2) (system (3.1)) has the same
number of equations and unknows.

THEOREM 3.1. (cf. [5]). Assume that the following conditions are fulfilled: 1)
the kernel (1.2) satisfies the assumptions (A1) it and (A2); 2) f € E*™; 3)
the homogeneous integral equation

b
u(t) = | K(t,s)u(s)ds (3.3)
/

has only the trivial solution uw = 0; 4) the collocation points (2.4) are used.
Then the equation (1.1) has a unique solution u* and there exists No such that,
for N > Ny, the collocation conditions (3.1) define a unique approzimation
uy € En tou*. The following error estimates hold:

¥ * A for 1< ,
||UN—U ||Loo(07b) SC { h% forrg i—l—a (34)

where r is the scaling parameter of the grid {(2.1),(2.2)}, hn is defined in
(2.8) and c is a positive constant independent of hy .

Proof. We write the integral equation (1.1) in the form v = Tu + f where

b
(Tu)(t) = / Kt s)u(s)ds, € 0,8, (3.5)

It follows from (A1) and (A2) (see [1]) that T": L°°(0,b) — C'[0,b], moreover,
T:L*(0,b) — L*(0,b), is compact. As the homogeneous equation u = Tu
has only the trivial solution u = 0, then the equation u = Tu + f has a unique
solution u* € L*(0,b). Due to Lemma 1.1, u* € E*™. The collocation
conditions (3.1) can be written in the form

uy = PvTun + Py f (36)

where Py is defined in Section 2. If N — oo then ||[Pyu — ul[p~(o,) — 0
for every u € C[0,b]. Therefore ||PnT — T'||gee(0,5)—L(0,5) = 0, N — 00.
From this and from the boundedness of (I —T)~! in L>°(0,b) we obtain that
I — PNT is invertible for sufficiently large N > Ny and uniformly bounded in
N:

(I = PNT) Ml (0,6) 10 (0,0) < C- (3.7)
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Let N > Ny and u}y = (I — PxT) ! Py f be the solution of the equation (3.6).
Then u} —u* = (I — PNT) ! (Pyu* — u*) and

luy = wl[L=0.p) < el|PNu™ = u™[[Loe(0,0)-

Due to (2.7) we obtain the estimate (3.4). O

4. SUPERCONVERGENCE AT COLLOCATION POINTS

Now we assume that the points (2.3) are the nodes of a quadrature formula

q=1

1 m
[ o@ds =Y Augm) + Bnle), ~1Sm <.o<un<1l (41)
1

which is exact for all polynomials of degree m + 1 (m > 2).

THEOREM 4.1. Let m € IN, m > 2. Assume that the following conditions are
fulfilled:

(i) the kernel K has the form (1.2) where

1) the function k() is m times continuously differentiable with respect
to T for T € [=b,b] \ {0} and such that the estimates

kW ()] < bl k=0,1,...,m,

hold with 0 < a < 1 and some positive constants by, by, -..,bm;
2) the function a(t, s) is m+1 times continuously differentiable on [0, b] x
[0,d] and [0,b] x [d,b], where 0 < d < b;
(ii) f € E©™mtL;
(#ii) homogeneous integral equation (3.3) has only the trivial solution
u =0,

(iv) the grid {(2.1),(2.2)} is used with r > (m+1)/(1—«) and the collocation
points (2.4) are generated by the nodes (2.3) of a quadrature formula (4.1)
which is exact for all polynomials of degree m + 1.

Then there exists Ng € IN such that for N > Ny

* (¢(N) () -«
q:17.“7717£1;?‘i(17.“74N|U’N(£j7q ) —u (€j7q )| S ChﬁhN ) (4‘2)

where u* is the solution of equation (1.1), uly € En is the solution of the
system (3.1), hn is defined in (2.8) and c is a positive constant independent

of hny (of N).
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Proof. Due to Lemma 1.1, u* € E®™*!, We have

(N) N)

|U7v(fj,q )—u*(f](-g N < uy — Pnvu*|lpep (@=1,...,m;j=1,...,4

As
uly — Pyu* = (I — PyT) " 'PyT(Pyu* —u*) N > N,

then with help of (3.7)
llun — Pnu®|[z=(0,p) < ¢ [[T(PNu® —u™)|[Le(0,)-
Let us estimate ||T'(Pyu* — u*)||Le(0,p)- Fix t € [0,b] and let

n(t,hn) = (t — hn,t + hy) N[0, D).

Then
b
‘/K(t,S)[U*(S) — (Pyu®)(s)lds| < L (t) + L»(1),
0
where
)
Li(t) = > /IK(t,S)[U*(S)—(PNU*)(S)]Ids,
N N (e b ) £0 #N)
£
I(t) = > /IK(t,S)[U*(S)—(PNU*)(S)]IdS-

- (N) L (N) —
]-[tjfptj Inn(t,hn)=0 t;ijl

It follows from the assumption (i) that

)
2

L(t) <cllu* — PNU*HLOO(OJ)) Z / |t — s|”“ds.

F157 185 I (k) £0 (N
pd

By the Lemma 2.1 we obtain |[u* — Pyu*||pe (0,5 < ¢'hR;. Due to (4.5)

N
t§- ) t+2hn

(4.6)

Z / |t —s|~%ds < ¢ / |t —s|7%ds < "R

318515k ) £0 (V) t—2hn
(v
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Thus
L(t) < ethphyy®, t€[0,b], ¢ = const. (4.7)

Consider the term I3(t), t € [0,5]. Let

In addition to the points (2.3) we fix in [—1,1] a point i1 (Mm+1 # i,
i=1,...,m). By an affine transformation we transfer 7,,+1 into the point
g]“fn)ﬂ e 1N, 6] so that ) # €N i =1, m (j = 1,...4N).
Similarly to the definition of Py (see Sectlon 2) we define for a continuous
function u:[0,b] — IR a piecewise polynomlal function P(m+1) :[0,b] - IR as
follows: Py'™'u is on every interval [t S 1 gN)] (j =1,...,4N) a polynomial
of degree not exceeding m and

Pl ue™y =w@Ee™), g=1,...,m+1;j=1,...,4N.

7,9 7,9
We have
Iz(t) S 121 (t) + .[22(t) + I23(t), t e [O,b],
where
¢
I (t) = > i ‘K (t.5) - K (1,6 ‘|u 5) — (Pnu)(s)|ds,
) A0t h ) =0 ¢Y)
N)
I (t) = > K] T e (6) - (a9l
8] £ 1 (b ) =0 )
¢
_ (N)y plm+1) . .
Inz(t) = > f Kt DIPNTu")(s) = (Pvu”)(s)]ds|-

[N 5N 10 (8 ) =0 £N)

Let us consider Iy (t), ¢t € [0,b]. It follows from Lemma 2.1 that

s

S§=Tj

¢

Iy (t) < ch > J/ ‘M

Y

Os

J: {t;NLt(N)]mn(t,hN):(Z\ t;]ji
where 7; € (S,tg-f?)- We have for s € [tEN%,th)]

e

s =] < dhwlt =7
12
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Since [tg-lﬁ,t;N)] Nn(t,hy) =0, s € [t(N) t(.N)] and 7; € (s,ti.]\i)), then

J=17
t_ .
o< zml g
|t — s

where ¢, and & are some positive constants. Therefore
()
2

Iy (t) < &"htt > / |t —s|7% tds <
G151 85N,k ) =0 (V)
< "Rt |t — 5|7 tds.
[Ovb]\n(t7hN)
Due to (4.5) I |t —s|7*"tds < ¢""'hy". Thus

[Ovb]\n(t7hN)

Iy (t) < cohRh @, t€[0,b], co = const.

Let us turn to I»(t), t € [0,b]. It follows from [tglf},t;N)]m
n(t,hny) = 0 that |K(t,t§.]\£))| < ¢t - tg,]\i)|_o‘ < 'hy®. Due to Lemma 2.1
"3 22
[Ju* — P](\rm+1)u*||Loo(07b) < "Wt Therefore
Iy (t) < cshRhiy @, t€][0,b], c3 = const.

Consider I»3(t), t € [0,b]. Due to the assumption (iv) we obtain that the
quadrature formula

(N)

t; AN _ t(N% m . JN) t(N%

[ ators = TSI Y g€y + L Ro)
™) =t

remains to be exact for polynomials of degree m + 1. Using this we have

tj

/ [(PY"Pu)(s) — (Pru™)(s)]ds = 0,

tj—1
and therefore I3(t) = 0, ¢ € [0,b]. Thus

Ly(t) < eah¥hi7®, t €0,b], ¢4 = const. (4.8)
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Now the estimate (4.2) follows from (4.3), (4.4), (4.6), (4.7) and (4.8). O

REMARK 2. For a € C™*1(]0,b] x [0, b]) the estimate (4.2) follows from the
corresponding results in [6; 3].
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