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Abstract. A pair of non-overlapping perfectly conducting equal disks embedded in
a two-dimensional background was investigated by the classic method of images, by
Poincaré series, by use of the bipolar coordinates and by the elliptic functions in the
previous works. In particular, successive application of the inversions with respect
to circles were applied to obtain the field in the form of a series. For closely placed
disks, the previous methods yield slowly convergent series. In this paper, we study
the local fields around closely placed disks by the elliptic functions. The problem of
small gap is completely investigated since the obtained closed form solution admits a
precise asymptotic investigation in terms of the trigonometric functions when the gap
between the disks tends to zero. The exact and asymptotic formulae are extended to
the case when a prescribed singularity is located in the gap. This extends applications
of structural approximations to estimations of the local fields in densely packed fiber
composites in various external fields.

Keywords: perfectly conducting disks, small gap problem, boundary value problem.

AMS Subject Classification: 30E25.

1 Introduction

The famous Villat-Dini formula [12,31] (see [2]) solves the Dirichlet problem for
a circular annulus R−1 < |w| < R (R > 1) in terms of the Poisson type integral
with the kernel expressed through the elliptic functions. An alternative formula
via the Fourier series was also known. Though these formulae are exact, it was
noted, that its numerical applications are problematic when R tends to unity.

A Möbius transformation of the annulus was applied in many papers to solve
the Dirichlet problem for two disks (see [14,19] and a review in [10]). Construc-
tive solution to two-particles problems in mechanics allows to describe the local
interactions between particles expressed in terms of the flux around the parti-
cles. Series representations of the local fields were obtained for harmonic (heat
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and electric conduction, ideal fluids, dielectric permittivity) and biharmonic
(elasticity and slow viscous fluids) equations [8, 16, 26, 28] for some shapes of
particles. The most complete results for two spheres were obtained in [1] by
use of the bispherical coordinates. However, the application of the obtained
results to estimation of the local fields between closely spaced particles were
problematic.

In the present paper, we pay attention to the conductivity problem for uni-
directional cylinders stated as a 2D boundary value problem for the Laplace
equation in a section perpendicular to cylinders. The local fields and the macro-
scopic conductivity properties obtained during solution to such problems are
of considerable interest in the electrical or thermal conductivity, the dielec-
tric permittivity. A review of the known results concerning the local field and
the macroscopic behaviour of circular cylinders can be found in [13, 22, 30].
Besides bipolar coordinates, the method of images is frequently used to ob-
tain an analytical solution of the boundary value problem. It is based on
the successive application of the inversions with respect to circles [8]. Each
inversion transforms a harmonic function in the disk to a harmonic function
out of the disk and vice versa. These inversions generate the Schottky group
with respect to compositions (Möbius transformations in complex variables
z and z). A solution of the corresponding boundary value problem can be
presented in the form of the uniformly convergent Poincaré series associated
with this Schottky group [25]. The resulting Poincaré series was also writ-
ten through the Schottky–Klein prime function [10, 11]. Though such series
theoretically converge for any multiply connected circular domain, practical
computations for densely packed disks are impossible because of their too slow
convergence.

Though many efforts were applied to investigate this problem in analytical
form, the existing methods do not give effective analytical formulae when a
small parameter δ, a non-dimensional distance between the disks introduced
by (2.1) below, tends to zero. For instance, the general Dirichlet problem
for a doubly connected domain was solved in [8, 16, 28], but its solution was
presented in the form of a series which was not asymptotically analysed as
δ tends to 0. The simplified version of such a series can be written in the
form

∞∑
k=0

[
(1 +

√
2δ )2k − α

]−1
. (1.1)

Figures 6–7 from [30] precisely represents that race to infinity when one at-
tempts to approximate the considerable flux between the disks by a sum of
finite order terms. The same problem of convergence for small δ arise in other
two-particles problems [1].

According to [17] the electrostatic capacity of two perfectly conducting disks
is proportional to 1√

δ
as δ → 0. Asymptotic formulae for the effective conduc-

tivity of the square and hexagonal arrays were deduced in [17].1 It was based
on the simple exact formulae for the local field around two charged cylinders in
the absence of an external field (see formulae (2.7)–(2.9) in the present paper).

1 see also a formula for an arbitrary square array of perfectly conducting disks in [15].
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This result was confirmed in [16] in terms of the energy release rates of two
circular elastic inclusions under anti-plane shear deformation. The result [17]
was used to get some progress in many-particles systems in [3, 4, 5, 6, 7, 18].
The main obstacle of the further development of the structural approximation
theory to the macroscopic properties of composite is absence of the exact or
asymptotic formulae like (2.7)–(2.9) for inclusions in an external field. Be-
cause all the known methods, the fast multipole method [8], functional equa-
tions [30], the prime function [10, 11], a finite element method [18], addition
theorems with corresponding linear system of algebraic equations [24, 27] (the
“z-” and the “ζ-schemes” in the terminolofy of [9]) lead to too long series of
the type (1.1). For smaller δ such a series becomes longer and blows up in
the limit case δ = 0. An alternative approach related to applications of the
elliptic functions leads to the crowding phenomenon [29] that complicates ap-
plication of the elliptic functions for δ < 0.1 as follows from our numeric tests
for (2.16).

A new fast algorithm for computing the flux around non-overlapping disks
was proposed in [22]. The key of the method is based on the exact solution
of the boundary value problem for a doubly connected domain as the zero
approximation for iterations. Such an available solution is known only for the
Dirichlet problem with prescribed constant values on circles (see formula (2.7)).
A new “hybrid basis scheme” was proposed in [9] based on the sums of two
Laurent series of the complex flux with undetermined coefficients. The first
series was the general Laurent series representation of a function analytic in a
circular multiply connected domain. The second series expressed the Laurent
series on a conformally transformed variable (viz. (2.3) form Section 2) which
locally described the flux in the gap between the disks. It is worth noting that
the structure of the resulting series from [22] coincides with the structure of
the series from [9]. The series from [22] was obtained by iterations with the
zero approximation (2.9) and the analogous series from [9] was obtained by
the collocation method. Therefore, in order to extend the fast method [22] to
general boundary value problems, first, we need to construct simple asymptotic
formulae for the local fields for a two-particle problem. Such an investigation
can be used in the hybrid basis scheme [9] as the basic elements in the series
representations.

In this paper, following [14, 19] we first construct an exact solution of the
modified Dirichlet problem for a doubly connected circular domain which de-
scribes the field around two perfectly conducting disks when an external flux
is given at infinity. This solution is written in Section 2 in such a form that its
dependence on the small gap parameter δ is explicitly presented. This makes
possible to perform a precise asymptotic investigation of the field around the
disks when the gap between the disks tends to zero (see Section 3). Such an
asymptotic analysis yields the new analytical formula (3.17) valid for arbitrar-
ily small δ. Numerical examples demonstrate the effectiveness of the method.
The exact formulae (2.16), (2.20) are extended and asymptotically analysed in
Section 4 to the case when a prescribed singularity is located in the gap. In
particular, the new asymptotic formula (4.6) is deduced.

Math. Model. Anal., 20(2):273–288, 2015.
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2 Two Disks in External Field

2.1 Conformal mapping

We will use the complex variable method. Let z = x1 + ix2 denote a complex
variable in the complex plane C. Consider two mutually disjoint disks Dk =
{z ∈ C : |z−ak| < r}. Let D be the complement of the closed disks |z−ak| ≤ r
(k = 1, 2) to the extended complex plane Ĉ = C ∪ {∞} (see Figure 1).

D

a1
z1

a2

z2

Figure 1. Two disks |z − ak| < r and the fixed points zk (k = 1, 2) of the map (z∗
(1)

)∗
(2)

calculated by (2.2).

The inversion of z through the circle Lk := ∂Dk is given by

z∗(k) =
r2

z − ak
+ ak.

The Möbius transformation (z∗(1))
∗
(2) has two fixed points z1 and z2 satisfying

the quadratic equation z∗(1) = z∗(2). Introduce the dimensionless parameter

δ = 1− 2r

|a1 − a2|
. (2.1)

If the distance |a1 − a2| tends to the minimal value 2r, the disks are closed to
be touching, the parameter δ tends to zero. We have

z1 =
a1 + a2

2
+
a1 − a2

2

√
δ(2− δ), z2 =

a1 + a2
2

− a1 − a2
2

√
δ(2− δ). (2.2)

One can see that zk belongs to Dk (k = 1, 2). The doubly connected domain
D is conformally mapped onto the annulus D′ = {z′ ∈ C : R−1 < |z′| < R} by
the function

z′ =
z − z1
z − z2

, (2.3)

where R can be obtained by a straightforward calculation of |z′| for z = ak+reiθ

(0 ≤ θ < 2π):

R =

√
2− δ +

√
δ

√
2− δ −

√
δ
. (2.4)
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Let us introduce the next conformal mapping

w = ln z′ = ln
z − z1
z − z2

, (2.5)

where a branch of the logarithm is chosen in such a way that the simply con-
nected domain D′\(R−1, R) is mapped onto the rectangle D′′ = {w = x+ iy ∈
C : |x| < lnR, |y| < π}. It is convenient to consider the mapping z′ → w as
a conformal mapping of the annulus D′ onto the rectangle D′′ with the glued
together horizontal sides x± πi (|x| < lnR). Then, the circles |z− a1| = r and
|z − a2| = r are transformed by (2.5) into the sides ± lnR + iy (|y| < π) with
the glued together points − lnR ± iy and − lnR ± iy, respectively. The point
z =∞ is mapped onto the point w = 0.

2.2 Simple solution

First, we discuss the well-known simple two-disks problem when the external
flux is absent, i.e., the potential has not singularities in the domain D and
attains constant values at the boundary.

Given two constants U1 and U2. To find a function u(x1, x2) ≡ u(z) har-
monic in D and continuous in D ∪ ∂D with the boundary conditions

u(t) = Uk on |t− ak| = r (k = 1, 2). (2.6)

Introduce the complex potential

ϕ(z) =
U2 − U1

2 lnR
ln
z − z1
z − z2

+
U2 + U1

2
, (2.7)

where a branch of the logarithm is arbitrary fixed in Ĉ\[z1, z2] (e.g. Section 2.1
after formula (2.5)), R is given by (2.4) and z1,2 by (2.2). The well-known
solution of the Dirichlet problem (2.6) is determined through the complex po-
tential [30]

u(z) = Reϕ(z) =
U2 − U1

2 lnR
ln

∣∣∣∣z − z1z − z2

∣∣∣∣+
U2 + U1

2
. (2.8)

The complex flux around the disks is equal to ϕ′(z), where the derivative

ϕ′(z) =
U2 − U1

2 lnR

(
1

z − z1
− 1

z − z2

)
. (2.9)

Simple formulae (2.7)–(2.9) were used in [22] as the zero order approximation
in the method of fast functional equations.

2.3 Boundary value problem

We determine the field near a pair of equal unidirectional perfectly conducting
cylinders placed in a uniform applied field. The result will be not so simple as
(2.7)–(2.9).

Math. Model. Anal., 20(2):273–288, 2015.
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Consider the following boundary value problem (the modified Dirichlet
problem)

u = −u0 on L1, u = u0 on L2, (2.10)∫
Lk

∂u

∂n
ds = 0 (k = 1, 2) (2.11)

for the potential u(z) harmonic in D except at infinity, where u(z) ∼ x1 = Re z.
The constant 2u0 is equal to the jump between the values of u(z) on the circles.
It is undetermined and has to be found during solution to the problem (2.10)–
(2.11). This problem has a unique solution.

The function u(z) can be considered as the real part of the function ϕ(z)
analytic in D except at infinity, where ϕ(z) ∼ z. It follows from (2.11) that
ϕ(z) is single valued in D. The boundary condition (2.10) becomes

Reϕ(z) = −u0 on L1, Reϕ(z) = u0 on L2. (2.12)

Introduce the function Ω(w) = ϕ(z) analytic in D′′, where z and w are
related by (2.5). The asymptotic relation ϕ(z) ∼ z, as z →∞, becomes

Ω(w) ∼ z2 − z1
w

= −
√
δ(2− δ)(a1 − a2)

w
, as w → 0, (2.13)

since z = (z2e
w − z1)(ew − 1)−1. The boundary condition (2.12) becomes

ReΩ(w) = −u0 for w = − lnR+ iy, (2.14)

ReΩ(w) = u0 for w = lnR+ iy
(
|y| < π

)
.

Moreover, the glued together sides x± πi (|x| ≤ lnR) yields

Ω(x− πi) = Ω(x+ πi), |x| ≤ lnR. (2.15)

The problem (2.14)–(2.15) has the unique solution

Ω(w) = p
[
ζ(w)− ζ(πi)

πi
w
]

+
iq

sn w′
, w ∈ D′′; u0 =

p

2
, (2.16)

where

w′ =
√
e1 − e3 w, (2.17)

p = −
√
δ(2− δ) Re(a1 − a2), q = −

√
e1 − e3

√
δ(2− δ) Im(a1 − a2), (2.18)

ζ(w) denotes the ζ-function of Weierstrass sn(
√
e1 − e3 w) the Jacobi elliptic

sinus corresponding to the periodicity cell D′′ (see Appendix). Formula (2.16)
can be justified by use of the properties of elliptic functions [2] (see also Ap-
pendix) in the following way. Let ℘(w) denote the ℘–function of Weierstrass.
First, we note that ζ(± lnR), ℘(± lnR), ℘(iy) are real and ζ(iy), ζ(πi), ℘′(iy)
are pure imaginary since the periodicity cell is a rectangle; ℘(z) is even and
ζ(z) is odd. Legendre’s formula (5.12) becomes

ζ(lnR)πi− ζ(πi) lnR =
1

2
πi. (2.19)
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Figure 2. Two disks in the uniform external field expressed by the potential x for various
locations of the centers with δ = 0.2. Data are for the potential Reϕ(z) and the constant

u0 calculated with (2.20) and (2.21): a) a2 = −a1 = 1
2

, u0 = 0.3; b)

a2 = −a1 = 1
2
√
2

(1 + i), u0 = 0.212132; c) a2 = −a1 = i
2

, u0 = 0.

Using (2.19), (5.13) and formula ℘′(± lnR) = 0 for w = ± lnR+ iy we have

Re
[
ζ(w)− ζ(πi)

πi
w
]

= Re
[
ζ(± lnR) + ζ(iy) +

1

2

℘′(± lnR)− ℘′(iy)

℘(± lnR)− ℘(iy)
∓ lnR

ζ(πi)

πi

]
= ±1

2
.

It follows from the second relation (5.4) that the function ζ(w) − ζ(πi)
πi w has

the period 2ω2 = 2πi. The function sn(
√
e1 − e3 w) is double periodic, i.e.,

sn(
√
e1 − e3 (w + 2ωk)) = sn(

√
e1 − e3 w) for k = 1, 2. Therefore, Ω(w)

satisfies (2.15).
The function sn(

√
e1 − e3 w) maps ∂D′′ onto the real axis. This implies

that Re[iq(sn(
√
e1 − e3 w))−1] = 0 for w ∈ ∂D′′. Therefore, Ω(w) satisfies the

boundary conditions (2.14)–(2.15). The constants p and q in (2.18) are chosen
in such a way that Ω(w) has the required asymptotic behaviour (2.13) since
ζ(w) ∼ w−1 and sn(

√
e1 − e3 w) ∼

√
e1 − e3 w, as w → 0.

Substitution of (2.5) into (2.16) yields the solution of the problem (2.12)

ϕ(z) = Ω
(

ln
z − z1
z − z2

)
. (2.20)

The second equation (2.16) gives the difference of the potentials on the disks

u0 = −1

2

√
δ(2− δ) Re(a1 − a2). (2.21)

Formulae (2.16)–(2.18), (2.20)–(2.21) are similar to Lagally’s formula (15)
from [19] (see also formula (47) from [10]). All these exact formulae give correct
numerical results for δ > 0.1. Typical contour plots of the potential (2.20) is
displayed in Figure 2. For smaller δ, direct numeric computations by these
formulae are problematic because of the crowding phenomenon [29]. In the
next section, we deduce numerically effective asymptotic formulae.

Math. Model. Anal., 20(2):273–288, 2015.
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3 Asymptotic Formulae for Small Gap

3.1 Local asymptotic formulae

Introduce the complex flux

ψ(z) =
∂u

∂x
− i∂u

∂y
in D.

The function ψ(z) is analytic in D and ψ(∞) = 1. In the present section, an
asymptotic formulae for ϕ(z) and ψ(z) are deduced as δ tends to zero and z is
located at the neck between the disks, i.e., near the point (a1 + a2)/2.

The flux can be approximately calculated by formula

ψ(z) = Ω′
(

ln
z − z1
z − z2

)(
1

z − z1
− 1

z − z2

)
≈ Ω′(πi)

(
1

z − z1
− 1

z − z2

)
(3.1)

near the middle point z = (a1 + a2)/2 since (2.2) implies that

ln
(a1 + a2)/2− z1
(a1 + a2)/2− z2

= ln(−1) = πi.

The derivative of the function (2.16) has the form (see (5.10))

Ω′(w) = −p
[
℘(w) +

ζ(πi)

πi

]
− iq
√
e1 − e3

sn2 w′

√
(1− sn w′)

(
1− k2 sn w′

)
, (3.2)

where w′ is given by (2.17).
We are interested in the asymptotic behaviour of the values (5.5)–(5.11)

when w → πi (δ → 0) to estimate the flux between the disks by (3.1). The
half–periods of the elliptic functions have the form ω1 = lnR and ω2 = πi
where R is given by (2.4). We have

lnR = ln
1 +

√
δ

2−δ

1−
√

δ
2−δ

=
√

2δ +O
(
δ3/2

)
, as δ → 0. (3.3)

Introduce the constant (compare to (5.8))

h = exp

(
− π2

lnR

)
. (3.4)

It follows form (3.3) and (3.4) that h can be approximated by an exponentially
small value denoted by o(δ)

h ≈ exp

(
− π2

√
2δ

)
= o(δ), as δ → 0. (3.5)

Here, o(δ) is defined as a value less than any positive power of δ, i.e.,

lim
δ→0+

o(δ)

δN
= 0 for any positive N. (3.6)
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We now proceed to estimate η1 and η2 (see (5.1)). It follows from (3.3) and
(3.5) that

η1 =
π2

12
√

2δ
+ o(δ). (3.7)

The value η2 = ζ(πi) can be found from Legendre’s identity (5.12) (see also
(2.19))

η2 = πi

(
π2

24δ
− 1

2
√
δ(2− δ)

)
+ o(δ). (3.8)

Then, the constants (5.5)–(5.7) can be estimated as follows

e1 ≈
π2

12δ
+ o(δ), e2 ≈ −

π2

24δ
+
π2

δ
h, e3 ≈ −

π2

24δ
− π2

δ
h, (3.9)

where the approximations are valid up to O(h2). Hence,

e1 − e3 ≈
π2

δ

(
1

8
+ h

)
, e2 − e3 ≈

2π2

δ
h

and (5.11) yields

k ≈ 4 exp

(
− π2

2
√

2δ

)
. (3.10)

Application of (5.7), (3.9) and (3.8) yields

℘(πi) +
ζ(πi)

πi
= e3 +

η2
ω2

= − 1

2
√
δ(2− δ)

+ o(δ).

It follows from (sn w′)−2 → 0, as w → πi, that

lim
w→πi

√(
1− 1

sn w′

)(
k2 − 1

sn w′

)
= k,

where k has the exponentially small order (3.10). Hence, (3.2) and (2.18) yield

Ω′(πi) =
1

2
Re(a1 − a2) + o(δ).

Therefore,

ϕ′(z) ≈ Re(a1 − a2)

2

(
1

z − z1
− 1

z − z2

)
=: Ψ(z). (3.11)

Introduce the function

Φ(z) =
Re(a1 − a2)

2
ln
z − z1
z − z2

(3.12)

satisfying Ψ(z) = Φ′(z). The function u(z) = ReΦ(z) solves the Dirichlet
problem (2.6) with

U1 = −Re(a1 − a2)

2
lnR, U2 =

Re(a1 − a2)

2
lnR. (3.13)

Math. Model. Anal., 20(2):273–288, 2015.
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It is worth noting that Φ(z) vanishes at infinity and it is not single-valued in D
contrary to ϕ(z) from (2.20) satisfying the problem (2.12).

Formula (3.11) describes asymptotically the flux between two equal disks
with the centres at a1 and a2 when δ tends to zero. It is worth noting that the
obtained asymptotics coincides with the result of [30] and [18]. The constant
multiplier in (3.11) is written up to an exponentially small term o(δ), as δ tends
to zero.

3.2 Global asymptotic formulae

In the present section, we construct an approximation of (2.20) asymptotically
valid in the whole domain D for sufficiently small δ. This approximation is
based on the degenerate elliptic functions discussed in [2].

Each term h2k exp(±πwω1
) from (5.1) can be estimated by use of (3.5) and

Im w ≤ π as follows∣∣∣∣h2k exp

(
±πw
ω1

)∣∣∣∣ ≤ exp

(
−2kπ2

√
2δ

)
exp

(
π2

√
2δ

)
≤ exp

(
− π2

√
2δ

)
.

Therefore, (5.2) and (3.7) yield

ζ(w) =
π2

24δ
w +

π

2
√

2δ
cot

πw

2
√

2δ
+ o(δ). (3.14)

Here, the estimation in δ is not uniform in w. The Weierstrass function ℘(w)
can be analogously estimated by use of (5.3)

℘(w) = − π2

24δ
+
π2

8δ

1

sin2 πw
2
√
2δ

+ o(δ). (3.15)

Estimations (3.9) and formula (5.9) yield

1

sn w′
=

1

sinw′
+ o(δ) with w′ =

πw

2
√

2δ
+ o(δ). (3.16)

Substitute (3.14), (3.16), (3.8) into (2.16), (2.20) and take terms up to O(δ)

ϕ(z)=−Re(a1−a2)

2

(
π cotw′+ln

z − z1
z − z2

)
− i Im(a1 − a2)

2

π

sinw′
+O(δ), (3.17)

where

w′ =
π

2
√

2δ
ln
z − z1
z − z2

+ o(δ), z ∈ D. (3.18)

(3.17)–(3.18) give the desired global asymptotic formula for the complex po-
tential.

4 Singularity in the Gap

In Sections 2–3, the uniform external field is modelled by the principal part z of
the function ϕ(z) at infinity, i.e., ϕ(z) is analytic in D except at infinity where it
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has a pole. The location of singularities and their types can be arbitrary in the
domain D. In the present section, we consider a numerically difficult example
when a singularity is located in the gap between the disks. More precisely, it
is assumed that the function ϕ(z) is analytic in D except at infinity and at
z = 1

2 (a1 + a2) where its principal parts are given by the asymptotic formulae

ϕ(z) ∼ z, z →∞; ϕ(z) ∼ α

z − 1
2 (a1 + a2)

, z → 1

2
(a1 + a2), (4.1)

where the given constant α stands for the intensity of the considered dipole at
z = 1

2 (a1 + a2).
Following Section 2 we are looking for the complex potential ϕ(z) satisfying

the boundary conditions (2.12). Then the function Ω(w) = ϕ(z) is analytic
in D′′. The asymptotic relations (4.1) become

Ω(w) ∼
√
δ(2− δ)(a2 − a1)

w
, w → 0; Ω(w) ∼ β

w − πi
, w → πi, (4.2)

where β = 4α/
(
(a2 − a1)

√
δ(2− δ)

)
. The function Ω(w) satisfies the same

boundary conditions (2.14)–(2.15). Instead of the representation (2.16) Ω(w)
has the form

Ω(w)=
√
δ(2−δ) Re(a2−a1)ζ(w)+

4√
δ(2−δ)

Re
α

a2 − a1
ζ(w − πi)− 2u0

η2
πi
w

+ 2i
√
e1 − e3

[
γ1

sn(
√
e1 − e3 w)

+
γ2

sn(
√
e1 − e3(w − πi))

]
, w ∈ D′′ (4.3)

and

u0 =
1

2

√
δ(2− δ) Re(a2 − a1) +

2√
δ(2− δ)

Re
α

a2 − a1
, (4.4)

where

γ1 =
1

2

√
δ(2− δ) Im(a2 − a1), γ2 =

2√
δ(2− δ)

Im
α

a2 − a1
. (4.5)

The proof of (4.3)–(4.5) is based on the comparison of the principal parts of
Ω(w) from (4.2), (4.3) and follows the justification of (2.16) from Section 2.3.

Following Section 3.2 we transform the exact formula (4.3) by an asymptotic
expression. Application of (3.14)–(3.16) yields

Ω(w) =
Re(a2 − a1)

2
π cot

πw

2
√

2δ
+

π

2δ
Re

α

a2 − a1
cot

π(w − πi)
2
√

2δ

− π2

6δ
√

2δ
Re

α

a2 − a1
(w + πi)

+
πi√
2δ

{
γ1

sin πw
2
√
2δ

+
γ2

sin π(w−πi)
2
√
2δ

}
+O

(
δ0
)
, w ∈ D′′. (4.6)

The complex potential ϕ(z) has the form (2.20). The flux is calculated through
the derivative d

dzϕ(z).
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Figure 3. Modulus of the flux in the domain with a2 = −a1 = 0.5, δ = 0.01 in the
presence of the external flux (1, 0) and the dipole α

z
of intensity α. Data and u0 are for: a)

α = 0, u0 = 0.070534; b) α = 0.1, u0 = 1.488296; c) α = 1, u0 = 14.24816. Labels to
contour lines are written.

Formula (4.6) is effective in computations for δ < 0.1. The intensity of flux
| ddzϕ(z)| is displayed in Figure 3 for different intensities of the dipole. Figure 3a
shows the flux when the dipole is absent. In the next figures the intensity of
the dipole increases that locally change the flux near the gap.

0.5 1.0 1.5 2.0 2.5 3.0
Θ

-0.004

-0.002

0.002

0.004

0.006

u0

Figure 4. Dependence of u0 from (4.4) on the intensity |α| and the direction θ of the
dipole (0 ≤ θ < π) when α = |α|eiθ for a2 = −a1 = 0.5, δ = 10−6. Data are for:

α = 0.4 10−5 (solid line); α = 0.2 10−5 (long dashed line); α = 10−6 (short dashed line).

Consider an example when the intensity of dipole has the form α = |α|eiθ
(0 ≤ θ < 2π), i.e., the amplitude of the dipole has the intensity |α| and its
direction is equal to θ. The dependence of u0 from (4.4), the difference of the
potential on the boundary circles, on α is shown in Figure 4. All the plots in
Figure 4 has the same value u0 = 0.00070610 at θ = π

2 . The common value of
u0 changes with δ.

5 Discussion

Fields around two particles embedded in a two-dimensional background were
investigated by various methods. The local fields were obtained in the form
of series by the classic method of images and its extensions [8, 10, 11, 16, 20,
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21, 23, 27, 30]. For closely placed inclusions, the previous methods yield slowly
convergent series. An exception is the Dirichlet problem (2.6) whose solution is
given by simple formulae (2.7)–(2.9). The latter formulae were applied in [22]
as the a zeroth approximation to a fast method for many inclusions.

An alternative approach based on the exact solution to the Dirichlet prob-
lem in terms of the elliptic functions is presented in the classical works [12,
14, 19, 31]. However, for smaller δ, direct numeric computations by these for-
mulae require too much computational resources because of the crowding phe-
nomenon [29].

Asymptotic formulae (3.11)–(3.13), (3.17)–(3.18) deduced in this paper give
accurate numeric results for arbitrary small δ and have a simple structure.
These formulae can be applied to the fast method for many inclusions [22] and
can be used in the hybrid basis scheme [9] as the basic elements in the series
representations. The main advantage of the deduced asymptotic formulae is
based on the exactly written main asymptotic term proportional to 1√

δ
.

The exact formula is extended to the case when a prescribed singularity is
located in the gap between the disks (see formulae (4.3)–(4.5)). This case is
difficult in numerical realizations for small δ by the method of images because
the distance (a2 − a1)

√
δ(2− δ) between the points z1 and z2 accumulating

singularities is small. Pure numerical methods are also problematic for such a
problem. Our asymptotic formula (4.6) as well as (3.17)–(3.18) have the same
numerical limitations on δ as the trigonometric functions from (4.6), hence,
practically have not. This extends applications of structural approximations
[7, 18] to estimations of the local fields in densely packed fiber composites in
various external fields.
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Appendix

In this appendix, some formulae and properties of the elliptic function theory
are presented in accordance with [2]. Let ω1 and ω2 denote the half–periods of
the periodicity cell; ζ(w) and ℘(z) = −ζ ′(w) the Weierstrass functions; sn w
the Jacobi elliptic sinus. The function ζ(w) can be expanded into Laurent’s
series

ζ(w) =
1

w
− c3w3 − c5w5 − · · ·

with some constants cj . Introduce the constants ηk = ζ(ωk) (k = 1, 2). We
have

2η1ω1 =
π2

6

[
1− 24

∞∑
k=1

h2k

(1− h2k)2

]
, (5.1)
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ζ(w) =
η1
ω1
w +

π

2ω1

[
cot

πw

2ω1

+ i

∞∑
k=1

(
2h2k exp(−πiwω1

)

1− h2k exp(−πiwω1
)
−

2h2k exp(πiwω1
)

1− h2k exp(πiwω1
)

)]
(5.2)

and

℘(w) = − η1
ω1

+

(
π

2ω1

)2[
1

sin2 πw
2ω1

− 4

∞∑
k=1

(
h2k exp(−πiwω1

)

(1− h2k exp(−πiwω1
))2

+
h2k exp(πiwω1

)

(1− h2k exp(πiwω1
))2

)]
. (5.3)

The function ζ(w) has the constant increments on the periodicity cell

ζ(w + 2ω1)− ζ(w) = 2η1, ζ(w + 2ω2)− ζ(w) = 2η2. (5.4)

The function ℘(w) is double periodic.
The following constants are important in the theory of elliptic functions

e1 = ℘(ω1) = − η1
ω1

+

(
π

ω1

)2 [
1

4
+ 2

∞∑
k=1

h2k

(1 + h2k)2

]
, (5.5)

e2 = ℘(ω1 + ω2) = − η1
ω1

+ 2

(
π

ω1

)2 ∞∑
k=1

h2k−1

(1 + h2k−1)2
, (5.6)

e3 = ℘(ω2) = − η1
ω1
− 2

(
π

ω1

)2 ∞∑
k=1

h2k−1

(1− h2k−1)2
, (5.7)

where

h = exp

(
πi
ω2

ω1

)
. (5.8)

The Jacobi elliptic sinus can be calculated via the Weierstrass ℘–function

sn2 w′ =
e1 − e3

℘ (w)− e3
, w′ =

√
e1 − e3 w. (5.9)

It follows from (5.5), (5.7) and (5.8) that the difference e1−e3 is always positive
for rectangular periodicity cells (ω1 > 0 and iω2 < 0). The derivative d

dw′ snw′

can be expressed by sn w as follows

d

dw′
snw′ =

√
(1− snw′)(1− k2 snw′), (5.10)

where

k2 =
e2 − e3
e1 − e3

. (5.11)

Legendre’s identity has the form

η1ω2 − η2ω1 =
πi

2
. (5.12)

The following formula is used in verification of (2.16)

ζ(u+ v) = ζ(u) + ζ(v) +
1

2

℘′(u)− ℘′(v)

℘(u)− ℘(v)
. (5.13)
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