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ABSTRACT

Gyrotron is a special tube generating powerful radiowaves in the millimeter wave range.
Gyrotrons are mainly used to heat nuclear fusion plasma, in order to induce controlled
thermonuclear reactions on earth. In addition, they have found a wide utility in radars
and the high-temperature processing of materials. Differential equations describing
gyrotron operation are analyzed from the mathematical point of view. Phase portraits of
electron trajectories in realistic resonators are determined.

1. GYROTRON EQUATIONS

The simplest equation which describes the electron motion in a gyrotron res-
onator can be written as follows:

j—’g Fi(A+ [ — Dp = if (OF (1)

with the initial condition p({p) = |po| exp(ifp), where 0 < 6y < 2.

Here p is the dimensionless transverse momentum of the electron, ¢ is the
dimensionless coordinate, A is the frequency mismatch, and F' is the beam-
high-frequency field coupling. Equation (1) represents the so-called cold-
cavity approximation in the gyrotron theory when the high-frequency field
in a gyrotron resonator f({) depends only on the geometry of the resonator,
but not on the electron motion, i.e., f does not depend on p. In this case the
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high-frequency field in a cavity is usually represented by a Gaussian
9 2
£(0) = exp [— (% -vs) ] @

where p is the dimensionless length of the resonator.

In [1] equation (1) was examined in detail from the mathematical point of
view. In particular electron trajectories were classified and the asymtotical
equivalence of (1) and the corresponding unforced equation (f(¢) = 0)

o Hild+ lg* —1)g =0, () = qo. (3)

dq

¢
was proved in the case when the function f({) decays fast enough for large
¢: faster than 1/¢**¢. In such a case each solution of (1) corresponds to a
solution of (3) with changed initial data.
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Figure 1. The graphs of |f|, R(f) Figure 2. The graph of vy
and S(f)

It should be emphasized that the high-frequency field in the cavity repre-
sented by a Gaussian in (2) is an approximation which is valid in resonators
with very high quality factors. In realistic cases even in the cold-cavity ap-
proximation one should determine f(¢) for each specific resonator geometry.
For this purpose the following second-order differential equation has to be

solved:
> f

d—CQ‘FW(C)Zf:O (4)
with the boundary conditions
d
T —i0f. (=0

4 _

= —10f =G



76 Olgerts Dumbrajs, Andrejs Reinfelds

Here v(¢) = k() +i0(¢). In Fig. 1 we show a typical example of f(().
The corresponding function v(¢) is shown in Fig. 2. As is evident from these
figures, for ¢ > 70 we can approximate f(({) as a wave moving in +( direction:
f(¢) ~ e~™¢. Moreover, since k > &, we can write f(() ~ e~¥¢.

2. MODIFIED EQUATIONS

Let us consider the equation

d_c +i(A+ [p]> = 1)p=if(Qe*F, p(0) = po, (5)

where f(¢) — 1if ( - +o0, and F > 0. We denote the solution to this
equation by p((,po). We wish to find a simpler equation such that each
solution of (5) corresponds to a solution of the simpler equation p(¢,po) (in
general with different initial conditions) and the difference

|ﬁ(<7ﬁ0) _p(Cvp0)| — 07

if ( = +o00.
A detailed analysis proves that the structure of the solutions of the equation

ap 2 1y, —
dC +z(A+|p| 1)p=0

is essentialy different from the structure of the solutions of (5). For this reason
it is expedient to compare (5) with the equation

dp .
d_C +i(A+ |p|2 —1)p=ie Ny p(0) = po. (6)

Let us introduce the new function p = e~ *<q. After the transformation we
obtain the equations

dq 2 _
d—C+z(A+|q| —1-k)g=if(Q)F (@)

and

d—<+z(A+|Q|2—1—k) q=iF. )

If (7) and (8) are asymptotically equivalent, i.e., if the homeomorphism exists
H:C — C, such that

|(j(<—7p0) - Q(C; H(pO))| - 0>
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for ¢ = +o00, then going over to (5) and (6), we obtained

|ﬁ(<7p0) - p(C: H(pO))| = |67ikCQ(C7p0) - eiikcq(cy H(pO))|
= |6(Cap0) - q(CaH(pO)” — Oa

for ¢ = +o00. From this it follows that (5) and (6) are asymtotically equivalent,
if and only if (7) and (8) are asymptotically equivalent.

Another important property of (8) should be mentioned. It is an au-
tonomous equation, i.e., its right-hand side does not depend on (. This makes
it possible to obtain illustrative trajectories in the phase space.

3. QUALITATIVE ANALYSIS OF EQUATION (8)

In the polar coordinates where ¢ = re?, we obtain
Z_%w = Fsin®, r(¢o) = ro, 9)
rge = (L=A—r>+k)r+Fcost, 0(C)=bo.

The differential equation for trajectories is
(Fcosf+ (1 —A—r*+k)r)dr = Frsin6df. (10)
Introducing the new auxiliary function z = cos 6, we obtain
(Fz+(1—A—7r*+k)r)dr+ Frdz=0.
By transforming
AFd(rz) +d (2(1 — A + k)r* —r*) =0,
integrating
4Frz +2(1 = A4+ E)r? —r* = 4Frozg + 2(1 — A+ k)rd —rj,
and returning to the old variables, we obtain

4Frcosf+2(1 — A+ k)? —r't = 4Frgcosby
+2(1 = A +k)rg —rg.

In the Cartesian coordinates we obtain a set of fourth order algebraic curves

4Fz +2(1 — A + k) (2 +y?) — (2® + 9°)? = 4Fx (11)
+2(1 = A+ k) (@5 + ) — (25 +v5)” (12)
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From this it follows that any trajectory of (8) is bounded, and that no spiral-
like trajectories exist. In principle we could integrate the system of equations
(9) using the Jacobi elliptic functions.

Instead we will use the qualitative theory of differential equations to study
the phase portrait of (8). Separating the real and imaginary parts, we obtain
the following system of equations:

% = —(1-A+ky+y@®+y°), (13)
g—g = (1-A+kx—a@®>+y?) +F

First, we determine the number and types of stationary points of the system
(13). Stationary points of this system are (a,0), where a are roots of the cubic
equation

2 —(1-A+k)z—F=0.

We consider the case when A =1 — A + k > 0. The cubic equation has at
least one positive root a; > v/A. The following cases are possible:

1. if 3v/3F > 2\, there is one positive root 2\/§ <a; < VAF,

2. if 3v/3F = 2\V/), there is one positive root a; = 2\/§ and two negative
coinciding roots as 3 = — %;

3. if 3v/3F < 2A\V/\, there is one positive and two different negative roots,
where a1 > vV, =V < a3 < —\/§ and —\/§< as < 0.

We now determine the type of stationary points corresponding to the linear
approximation. We evalute the Jacobi matrix of the right-hand side of the
system at stationary points. We find that TrJ = 0 and det J|y—q,y—0 =
A2 —4X? + 3a* = (A — a?)(\ — 3a®). Hence, the stationary point of the linear
approximation is a saddle, if det J < 0, a center, if det J > 0, or a complex

point, if det.J = 0. In our case: if \/§ < la| < VA, then detJ < 0; if

la| < \/g, or |a| > VA, then detJ > 0; if |a] = \/g, or |a| = VA, then
det J = 0. Thus, we have:

1. The case of the positive root. Here a; > VX and det J|z=ar,y=0 > 0.

2. The case of the double negative root. Here ax = az = —\/§ and
det J|$:a2,37y:0 =0

3. The case of two different negative roots. Here —VA < a3 < —\/§ and

—\/§ < ay < 0. It follows that det J|,—a, y—o < 0 un det J|p—gy y—o > 0.

Since the trajectories of (10) are fourth order algebraic curves, then for det J >
0 we find that the corresponding stationary point is a center.
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There three types of phase portraits for (13). The type depends on the sign

of the expression
3V3F — 20V

1. If 3v/3F —2\V/X > 0, then the equation has one stationary point (a;,0)
which is a center. Other trajectories are closed curves (homeomorphic to
a unit circle). The phase point rotates along the trajectory clockwise. The
corresponding solutions are periodic functions where periods are changing and
are continuously dependent on initial conditions. If the trajectory approaches
the stationary point, then its period approaches the value

T 2T ’

V(ai = 2)(3ai — )

and if 22 + y2 — 400, then T'(x3 + y2) — 27.

2. If 3v/3F — 2X\v/X = 0, then the phase portrait is similar to the previous
case. One new stationary point is born (a2 3,0) on one closed trajectory,
and instead of the corresponding closed trajectory two trajectories appear:
the stationary point (as3,0) and a loop which originates and ends at this
stationary point. The periods of the closed trajectories approach +oo, if the
origin approaches the loop. The periods approache

if the origin approaches (ay,0).
Note. Let us prove that in the two cases disscussed above the direction of rotation of
the phase point is clockwise. In (8) we go over to a new variable by means of the formula
_ b
g=re” +ai,

where a; is the root of the corresponding cubic equation. After transformations we obtain
the following system of equations:

g—g = —a1(r? +2a17rcosf)sind,

Z—C = —r2—3aircosd —a?(1+2cos?0) +1— A +k.

The right-hand side of the second equation is a quadratic trinomial in r. Let us determine
the sign of the discriminant

D=9a2cos?0 +4(1 —A+k—a?(1+2cos?0)) =4(1 — A+ k —a?)+a?cos? 0

4aF 5, adcos?@ —4F  4F cos® § — 4F
=——+4ajcos = <
al al al

<0

It follows that 3—‘2 < 0 which means that the phase point rotates clockwise.

3. If 3v/3F — 2\V/\ < 0, then the phase portrait is somewhat more com-
plicated. The stationary point (az,0) splits into two stationary points, one of
which (as,0) is a saddle whose two separatrices form a loop which encloses
the second stationary point (ag,0) which is a center. Hence, there exist the
following trajectories:
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i — three stationary points: one saddle and two centers;

ii — two separatrices of the saddle where the phase points rotate in opposite
directions;

iii — closed trajectories whose periods vary from 0 to +00 approaching loops
of trajectories and the phase point rotates both clockwise and counterclock
wise.

It is possible to find the equation for separatrices. It turns out that the

separatrices form the Pascal limacon.
Note. Determination of the equation for separatrices. We use the trajectory equation
and without loosing generality assume that yo = 0. Then

(22 +y*)? — 201 — A+ k)(2® +y?) —4Fz =z3 — 2(1 — A + k)x3 — 4Fxo
Introducing the new variable £ = u + a3, we obtain
(u+a3)®+y>)? =20 —A+k)((u+a3)®+y?)—4F(u+a3) = a3 —2(1 — A+ k)a2 — 4Fa3.
After some transformations we find
(w? +y? +2a3u)? =2(1 — A+ k —a2)(w? + y?) + 4u(F + (1 — A+ k)ag — a3).

Since a3 is the root of the corresponding cubic equation, we obtain the equation for the
Pascal limacon

('u,2 +y2 + 20,3u)2 =21-A+k— a%)(u2 + y2).

4. SOLUTIONS OF EQUATION (6)

Taking into account what has been said above, we can state that any solution
of (6) can be repesented in the form

p(¢.po) = e~ *<q(¢, po),

which is a product of two different periodic functions (except separatrices).
This means that the corresponding solution is a periodic function with the
minimum period nk, where n € N, or an almost periodic function. By pro-
jecting the integral line of (6) onto the phase plane, we find a complicated
behavior which reminds chaos. All we can say that

|p(<ap0)| = |q(Cap0)|

which means that the projection of the integral line is located in a ring which
is determined by the modulus of the solution of (8).

REFERENCES

[1] O. Dumbrajs, R. Meyer—Spasche and A. Reinfelds, Analysis of electron trajectories in
a gyrotron resonator, IEEE Trans. Plasma Science 26 (1998), No. 3, P. 846-853.



