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ABSTRACT

Gyrotron is a special tube generating powerful radiowaves in the millimeter wave range�
Gyrotrons are mainly used to heat nuclear fusion plasma� in order to induce controlled
thermonuclear reactions on earth� In addition� they have found a wide utility in radars
and the high
temperature processing of materials� Di�erential equations describing
gyrotron operation are analyzed from the mathematical point of view� Phase portraits of
electron trajectories in realistic resonators are determined�

�� GYROTRON EQUATIONS

The simplest equation which describes the electron motion in a gyrotron res�
onator can be written as follows�

dp

d�
� i
� � jpj� � ��p � if
��F 
��

with the initial condition p
��� � jp�j exp
i���� where � � �� � ���
Here p is the dimensionless transverse momentum of the electron� � is the

dimensionless coordinate� � is the frequency mismatch� and F is the beam�
high�frequency 
eld coupling� Equation 
�� represents the so�called cold�
cavity approximation in the gyrotron theory when the high�frequency 
eld
in a gyrotron resonator f
�� depends only on the geometry of the resonator�
but not on the electron motion� i�e�� f does not depend on p� In this case the
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high�frequency 
eld in a cavity is usually represented by a Gaussian

f
�� � exp

�
�
�
��

�
�
p
�

���

��

where � is the dimensionless length of the resonator�
In ��� equation 
�� was examined in detail from the mathematical point of

view� In particular electron trajectories were classi
ed and the asymtotical
equivalence of 
�� and the corresponding unforced equation 
f
�� � ��

dq

d�
� i
� � jqj� � ��q � �� q
��� � q�� 
��

was proved in the case when the function f
�� decays fast enough for large
�� faster than ������� In such a case each solution of 
�� corresponds to a
solution of 
�� with changed initial data�

Figure �� The graphs of jf j� �	f

and �	f


Figure �� The graph of �

It should be emphasized that the high�frequency 
eld in the cavity repre�
sented by a Gaussian in 
�� is an approximation which is valid in resonators
with very high quality factors� In realistic cases even in the cold�cavity ap�
proximation one should determine f
�� for each speci
c resonator geometry�
For this purpose the following second�order di�erential equation has to be
solved�

d�f

d��
� �
���f � � 
��

with the boundary conditions

df

d�
� i�
��f� � � �

df

d�
� �i�
��f� � � �out
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Here �
�� � k
�� � i	
��� In Fig� � we show a typical example of f
���
The corresponding function �
�� is shown in Fig� �� As is evident from these

gures� for � � �� we can approximate f
�� as a wave moving in �� direction�
f
�� � e�i�� � Moreover� since k � 	� we can write f
�� � e�ik� �

�� MODIFIED EQUATIONS

Let us consider the equation

d�p

d�
� i
� � j�pj� � ���p � if
��e�ik�F� �p
�� � �p�� 
��

where f
�� � � if � � ��� and F 
 �� We denote the solution to this
equation by �p
�� �p��� We wish to 
nd a simpler equation such that each
solution of 
�� corresponds to a solution of the simpler equation p
�� p�� 
in
general with di�erent initial conditions� and the di�erence

j�p
�� �p��� p
�� p��j � ��

if � � ���
A detailed analysis proves that the structure of the solutions of the equation

dp

d�
� i
� � jpj� � ��p � �

is essentialy di�erent from the structure of the solutions of 
��� For this reason
it is expedient to compare 
�� with the equation

dp

d�
� i
� � jpj� � ��p � ie�ik�F� p
�� � p�� 
��

Let us introduce the new function p � e�ik�q� After the transformation we
obtain the equations

d�q

d�
� i
� � j�qj� � �� k��q � if
��F 
��

and
dq

d�
� i
� � jqj� � �� k�q � iF� 
��

If 
�� and 
�� are asymptotically equivalent� i�e�� if the homeomorphism exists
H �C � C� such that

j�q
�� p��� q
��H
p���j � ��
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for � � ��� then going over to 
�� and 
��� we obtained

j�p
�� p��� p
��H
p���j � je�ik� �q
�� p��� e�ik�q
��H
p���j
� j�q
�� p��� q
��H
p���j � ��

for � � ��� From this it follows that 
�� and 
�� are asymtotically equivalent�
if and only if 
�� and 
�� are asymptotically equivalent�
Another important property of 
�� should be mentioned� It is an au�

tonomous equation� i�e�� its right�hand side does not depend on �� This makes
it possible to obtain illustrative trajectories in the phase space�

�� QUALITATIVE ANALYSIS OF EQUATION ���

In the polar coordinates where q � rei�� we obtain

�
dr
d�

� F sin �� r
��� � r��

r d�
d�

� 
���� r� � k�r � F cos �� �
��� � ���

��

The di�erential equation for trajectories is

�
F cos � � 
���� r� � k�r

�
dr � Fr sin � d�� 
���

Introducing the new auxiliary function z � cos �� we obtain

�
Fz � 
���� r� � k�r

�
dr � Fr dz � ��

By transforming

�F d
rz� � d
�
�
���� k�r� � r�

�
� ��

integrating

�Frz � �
���� k�r� � r� � �Fr�z� � �
���� k�r�� � r�� �

and returning to the old variables� we obtain

�Fr cos � � �
���� k�r� � r� � �Fr� cos ��

��
���� k�r�� � r�� �

In the Cartesian coordinates we obtain a set of fourth order algebraic curves

�Fx� �
���� k�
x� � y��� 
x� � y��� � �Fx� 
���

��
���� k�
x�� � y���� 
x�� � y���
� 
���
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From this it follows that any trajectory of 
�� is bounded� and that no spiral�
like trajectories exist� In principle we could integrate the system of equations

�� using the Jacobi elliptic functions�
Instead we will use the qualitative theory of di�erential equations to study

the phase portrait of 
��� Separating the real and imaginary parts� we obtain
the following system of equations�

�
dx
d�

� �
���� k�y � y
x� � y���
dy
d�

� 
���� k�x� x
x� � y�� � F�

���

First� we determine the number and types of stationary points of the system

���� Stationary points of this system are 
a� ��� where a are roots of the cubic
equation

x� � 
���� k�x� F � ��

We consider the case when � � � � � � k 
 �� The cubic equation has at
least one positive root a� 


p
�� The following cases are possible�

�� if �
p
�F 
 ��

p
�� there is one positive root �

q
�
�
� a� �

�
p
�F �

�� if �
p
�F � ��

p
�� there is one positive root a� � �

q
�
�
and two negative

coinciding roots a��� � �
q

�
�
�

�� if �
p
�F � ��

p
�� there is one positive and two di�erent negative roots�

where a� 

p
�� �p� � a� � �

q
�
�
and �

q
�
�
� a� � ��

We now determine the type of stationary points corresponding to the linear
approximation� We evalute the Jacobi matrix of the right�hand side of the
system at stationary points� We 
nd that TrJ � � and det J jx�a�y�� �
�� � ��� � �a� � 
�� a��
�� �a��� Hence� the stationary point of the linear
approximation is a saddle� if det J � �� a center� if det J 
 �� or a complex

point� if det J � �� In our case� if
q

�
�
� jaj � p

�� then det J � �� if

jaj �
q

�
�
� or jaj 
 p

�� then det J 
 �� if jaj �
q

�
�
� or jaj � p

�� then

det J � �� Thus� we have�

�� The case of the positive root� Here a� 

p
� and det J jx�a��y�� 
 ��

�� The case of the double negative root� Here a� � a� � �
q

�
�
and

det J jx�a����y�� � �

�� The case of two di�erent negative roots� Here �p� � a� � �
q

�
�
and

�
q

�
�
� a� � �� It follows that det J jx�a��y�� � � un det J jx�a��y�� 
 ��

Since the trajectories of 
��� are fourth order algebraic curves� then for det J 

� we 
nd that the corresponding stationary point is a center�
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There three types of phase portraits for 
���� The type depends on the sign
of the expression

�
p
�F � ��

p
��

�� If �
p
�F � ��

p
� 
 �� then the equation has one stationary point 
a�� ��

which is a center� Other trajectories are closed curves 
homeomorphic to
a unit circle�� The phase point rotates along the trajectory clockwise� The
corresponding solutions are periodic functions where periods are changing and
are continuously dependent on initial conditions� If the trajectory approaches
the stationary point� then its period approaches the value

T �
��p


a�� � ��
�a�� � ��
�

and if x�� � y�� � ��� then T 
x�� � y���� ���
�� If �

p
�F � ��

p
� � �� then the phase portrait is similar to the previous

case� One new stationary point is born 
a���� �� on one closed trajectory�
and instead of the corresponding closed trajectory two trajectories appear�
the stationary point 
a���� �� and a loop which originates and ends at this
stationary point� The periods of the closed trajectories approach ��� if the
origin approaches the loop� The periods approache

T �
��

�
�

if the origin approaches 
a�� ���
Note� Let us prove that in the two cases disscussed above the direction of rotation of

the phase point is clockwise� In 	�
 we go over to a new variable by means of the formula

q � rei� � a� �

where a� is the root of the corresponding cubic equation� After transformations we obtain
the following system of equations��

dr
d�

� �a�	r� � �a�r cos �
 sin ��
d�
d�

� �r� � �a�r cos � � a�
�
	� � � cos� �
 � ���� k�

The right
hand side of the second equation is a quadratic trinomial in r� Let us determine
the sign of the discriminant

D � �a�� cos
� � � �	���� k � a��	� � � cos� �

 � �	� ��� k � a��
 � a�� cos

� �

� �
�F

a�
� a�

�
cos� � �

a�
�
cos� � � �F

a�
�

�F cos� � � �F

a�
� ��

It follows that d�
d�

� � which means that the phase point rotates clockwise�

�� If �
p
�F � ��

p
� � �� then the phase portrait is somewhat more com�

plicated� The stationary point 
a�� �� splits into two stationary points� one of
which 
a�� �� is a saddle whose two separatrices form a loop which encloses
the second stationary point 
a�� �� which is a center� Hence� there exist the
following trajectories�
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i � three stationary points� one saddle and two centers�

ii � two separatrices of the saddle where the phase points rotate in opposite
directions�

iii � closed trajectories whose periods vary from � to �� approaching loops
of trajectories and the phase point rotates both clockwise and counterclock
wise�

It is possible to 
nd the equation for separatrices� It turns out that the
separatrices form the Pascal limacon�
Note� Determination of the equation for separatrices� We use the trajectory equation

and without loosing generality assume that y� � �� Then

	x� � y�
� � �	� ��� k
	x� � y�
� �Fx � x�
�
� �	� ��� k
x�

�
� �Fx�

Introducing the new variable x � u� a�� we obtain

		u�a�

��y�
���	����k
		u�a�


��y�
��F 	u�a�
 � a�
�
��	����k
a�

�
��Fa��

After some transformations we �nd

	u� � y� � �a�u

� � �	� ��� k � a�

�

	u� � y�
 � �u	F � 	���� k
a� � a�

�

�

Since a� is the root of the corresponding cubic equation� we obtain the equation for the
Pascal limacon

	u� � y� � �a�u

� � �	� ��� k � a�

�

	u� � y�
�

�� SOLUTIONS OF EQUATION ���

Taking into account what has been said above� we can state that any solution
of 
�� can be repesented in the form

p
�� p�� � e�ik�q
�� p���

which is a product of two di�erent periodic functions 
except separatrices��
This means that the corresponding solution is a periodic function with the
minimum period nk� where n � N � or an almost periodic function� By pro�
jecting the integral line of 
�� onto the phase plane� we 
nd a complicated
behavior which reminds chaos� All we can say that

jp
�� p��j � jq
�� p��j

which means that the projection of the integral line is located in a ring which
is determined by the modulus of the solution of 
���
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