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ABSTRACT

In this work a computer simulation of impurity diffusion in the vicinity of individual
bicrystalline grain boundary has been carried out with the use of a modified Fisher model
in which the grain’s boundary influence (in the form of internal mechanical stresses) onto
impurity atoms is taken into account. In computations the monotone difference schemes
of the second order of accuracy on irregular grids were used. For such schemes under
intrinsic restrictions on the grid steps the stability in the uniform norm has been proved.

1. INTRODUCTION

Grain Boundaries (GBs) affects most of electronic, strengthening and other
properties of polycrystals. Their influence is mainly due to more active mass
transfer by GBs than in grains. Hence a knowledge of impurity profiles in
the vicinity of GBs is required to understand physical processes which are
controlled by diffusion. Most descriptions of GB diffusion up till now have
been based upon the known Fisher model for bicrystals (see, [1]). Accord-
ing to this model, GB is defined as semi-infinite isotropic layer (confined by
two semi-infinite grains with a lower diffusivity D,) of uniform thickness ¢
with high diffusivity Dy, Dy >> D,. GB plane is normal to the interface
bicrystal/source through which diffusant with concentration co is transferred.
However the Fisher model can be rather far from reality because it fails to
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account for the influence of added forces acting on impurity atoms from GB
(elastic, electric, etc.). In this work a computer simulation of impurity dif-
fusion in the vicinity of bicrystalline GB has been carried out with the use
of a modified Fisher model taking into account the effect contributed by the
internal mechanical stresses acting on impurity atoms from GB. In this case
GB 7core” was treated as a dislocation wall [2] acting on impurity atoms
with force F(z1) = Fyexp[—2m(z1 — 6/2)/has] in the direction z; normal to
GB plane. Pre-factor Fy = 4n%er®Gb(1 + v)/3h3,(1 — v) is determined by
a relative expansion (compression) of matrix lattice due to impurity atoms
e = (ri—rm)/r: (r; and ry, are atomic covalent radii for impurity and matrix
atoms respectively), shear modulus G, Poisson coefficient v, Burgers vector b
and distance hgs between dislocations.

2. PROBLEM DEFINITION AND DIFFERENCE SCHEME

Impurity diffusion problem can be formulated as a conjunction problem in the
rectangle Q0 = Q[ JQ, (see Fig.1),

O ={(z1,72), 0<x1<6/2, 0<ws< Ly},

Qy ={(z1,22), 6/2< 21 <Lz, 0<2x2<Ly,}.

In the domain €2, we shall find a solution of the equation

c’)ub o Db (621“, 62ub

E = 61‘% al’% ) R (5[71,5[72,25) €y x (O,t()), (21)
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and in the domain ), the following one

du 0%u 0
ot = Do~ g Cew),  @rm) €A x (0k).  (22)

The continuity conditions for the solution

up(1,22,1) = ug(z1,x2,1t) (2.3)
I1:§/270 I1:6/2+0
and for the flow
p, 2% (D Ouy _ ng> (2.4)
Oy |, - =5/2-0 ! 0w 21=0/2+0

are satisfied at the conjunction line #; = §/2. At the boundary of the domain
 the following boundary conditions are given

aub
— =0, =0, 2.5
61‘1 x1=0 ug|m1_L21 ( )
ub|x2:0: Ug |m2:0: Uo, ub|m2:Lz2 = Uy |$2:Lz2 =0.
Initial data has the form
Ug, Tz = 0,
o= 0, a0, 20

where u = uy, or u = uy.

Further, for the function v(z1) we shall suppose a fulfillment of inequality
v(z1) > 0,Vz1 € Q. From the physical point of view it describes the situation
when the force acting on impurity atoms is directed outside the domain 2. In
general, the function v(z:) has a form v(z,) = DyF(z1)/kT.

We shall find a solution of the problem (2.1)—(2.6) using the difference
schemes of the second order of approximation on irregular grids [4]-[6]. Let
us suppose that in the problem’s domain of definition Q x [0,#5] we have
a grid Whr = wh X Wy, where w, = {t; = j7,j = 0,1,...,J0, joT = to},
©Op = 01 X wa, &1 = {Tim+1 = Tim + ham,m = 1, M, 2o = 0,z = Ly, },
we = {x2, = nhy,n =0,N, ho,, = L,,/N}. Thus, in the direction z; we use
an irregular grid and in the direction x5 a uniform one.

Let us note that the selection of a uniform in the direction zo grid is de-
termined by the model’s specific character. The diffusion process is supposed
flowing very slow in the direction z». As a result it can be disregarded. The
selection of the irregular grid is determined by the fact of small geometric
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measures of the domain  in which a convective transfer in the direction z;
takes place.

On the grid @y, let us approximate the problem (2.1)-(2.6) by the following
difference scheme

2D,
Yt — h—lyzl = Dbyfzmz7 m = 07

(y + 61 myfl + 62 myzl)t = Db (gflil
+(y+61myf1 +62my:t1)i2:t2)> m = ]-amO_ ]->

Km + 1 Km

N N 1 N .
5 Yt = K [DgYz, — Doiz,] + 5 [T+yz1 +r yil]
m
d Tmk . K
(y + 61 mYz, + 62 mywl)t = h:nggfliil + fjr_L:gwl + 7:771?)9?1 (27)

_dm(g+61mgfl+62mgm1)v m:m0+17M7

ngZUO;gmNzoam:())M) gMnZO;n:]-aN_L

where
_ 1
Km = ]-+Rm,
n - Eh1m+1+2hlm_F_;nhlm+2hlm+l
D, 6 9 6
Frﬂi:z = 075(Fm + |Fm|),
P = —0(F1,), F1, =T1im + hm, (2.8)
7 h m _h m —
oy = L, A = ' (Z1,.),

3

Oim=hr, am=ht, hE=05m=%|hnl.

Here we suppose that the conjunction line z; = 6/2 hits a node z; = Tl
of the grid &, and himg—1 = him,, i-e. in the vicinity of x; = §/2 the
grid is uniform. It is easy to show from results of [4] - [6] that the scheme
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approximates the problem (2.1)-(2.6) with the second local order at point
(Z1,,, %2n,t;) in subdomains Qp and ;. Note that conjunction conditions are
approximated with use of the equation such that the order of approximation
also equals to two.

Taking into account that the difference equations can be written in the form

Amnym—ln = CmnYmn + BmnYmiin = —Fmn, (29)
where
(0, m =0,
7Dy O m
by m =T,mo =1
hlmhlm hlm’ m 1o ’
Apn = Thkm Dy T
- m = m
h2, 2him 0
TEmDy T O1m -
- 1 d = 1IL,M—-1
Bl T g T = mo B LA,
( 27‘Db
0 =0
h%m+1, " ’
7_-Db 62m 1 1
- m=1,mg —
B _ hl mhl m+1 hl m+1, o ’
mn= A rkpDg Tl
P — m =m
h2,,  2him’ 0
ThmDyg Tfjr‘L 32 m -
- (1+7dy), m=mo+1,M—1,
\ hl mhl m+1 hl m—+1 hl m+1
(( Apn+ Bmn+1, m =0,mg — 1,
1
2 hlm
\Amn+an+1+7—dm; m:mg+1,M—1,
Yon + TDbyizzz,On; m = 0,
Y(w1,w2) mn + TDby(wl,wz)izzz mn, = 17m0 - 17
Finn = Km + 1 TKm
2 Ymn + 2 Dvyzoosmns, M = mo,
Y(w1,w2) mns m:m0+1,M—1,
Y(wiws)mn = (y + 61?/3?1 + 62ym1)mn

= WimYm+1in + (]- —Wim — w2m)ymn

+w2 mYm—1n,
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om_ _ _Oim

hm+1 ’ wzm = hm ’

we solve the problem by the difference sweep method. At m = 0 for uniformity
we suppose that A,,, = 0. A stencil of the scheme at z; = 0 consists of
two nodes (z1¢,%2,) and (z11,22,) and a value of Ay, does not defined, in
general. Applying the maximum principle [3] we shall take this circumstance
into account.

A sufficient condition of positivity of coefficients of (2.9) can be formulated
in the form of inequality 7 > ¢(h?,,,; — hi,,) From the form of coefficients
it follows that the diagonal dominance carries out when 7 < 0,5|d,,|~™". Ad-
ditional restriction on step 7 that provides stability of the difference scheme
is resulted from the explicit approximation of derivative in direction z» and
has a form 7 < ch3/D,,.

In order to investigate the stability of the difference scheme (2.7) let us
apply a consequence of the maximum principle ([3]).

Let y = y(P) be a solution of the heterogeneous equation

Wim =

L(P)=A(P)y(P)- > B(P,Qy(Q) =F(P)onw, (2.10)
QeS'(p)
y(P) =0 on ~.

Here P is a point of the stencil §(P), §'(P) is a vicinity of the node P.

THEOREM 2.1. If D(P) = A(P) — Z B(P,Q) > 0 everywhere on w then

QeS'(P)
for solution of the problem (2.10) we have the following estimate

F
lylle < H— .
‘D (&}

Let us suppose that ug = 0 in (2.5). Then

Dmn = Cmn— Amn — Bmn
1, m = 0,mg — 1,
1 TrmKEm
= —(km + 14+ 7dy) — , = mo,
2(n +1+4+7dy) . m = mg
1+ 7d,, m=mo+1,M—1,
. —1 1 .
It is easy to see that [|[D7 ||c < ||———| < 1+ 27]|v|]|c. To estimate
1—7ld| ||~

the right side we shall consider two cases. First we shall show that for any
function v,,,, on the grid @ the following inequality takes place

V(w1 wa),mnl < ([V]le- (2.11)
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Indeed, |U(w1,w2),mn| = |w1mvm+1n + (]- — Wim — w2m)vmn + WZmUm71n| <
lwim + (1 — wim — wom) + waml |[vllc = ||v]]c. Taking into account that
wim > 0 and we,, > 0 we can see that the last inequality holds when 1 —
Wim — wam > 0. But the last inequality is valid since for hi ;41 > b1y we
h —h 2h +h
M, wom = 0 and 1—wi m —wam = SmAl T Mmoo
3h1mi1 31 m41
himyr —him

3h1m

have wq,y, =

For hy ma1 < him we get wiy, = 0, wom = —

himyr +2him

> 0.
3hl m
Let us note that for any function v on wy,, the following inequality holds

al_wlm_w2m:

[0+ Tevzsanlle < lvlle, (2.12)

when 7 < h/c.
Applying consequently (2.11) and (2.12) and taking into account that &, <
1, for the right side F;,, we get

I1Flle < llylle-

Thus, from Theorem 1 and estimates for ||F||c and ||D~}||c it follows that

Iy Hlle < plly)lle,  p =1+ 27|lvllc, (2.13)

The last estimate expresses the property of p - stability of (2.7).
Let us note that requiring the condition 7 < ¢ max hy m, ¢ = 0,5/||v||c, we
m

can avoid the restriction v(z;) > 0 and preserve the estimate (2.13).

3. COMPUTING OF IMPURITY PROFILES IN THE VICINITY
OF GRAIN BOUNDARIES

As is seen from the modified Fisher model (2.1)-(2.6), a character of impurity
distribution w4 (1, 22) around GB plane for constant time ¢ (which means ei-
ther heat treatment time or time of bicrystal growing) will be determined by
the sign of elastic force F'(z1) acting on impurity from the boundary ”core”
and by the relation between diffusion and drift terms in (2.2). As litera-
ture data show (see, [1]), in the most known experiments on GB diffusion
Dy >> D,. This actually allows (as in the standard Fisher model) the in-
fluence of impurity distribution along GB ”core” uy(z2) on the character of
impurity distribution ug(z1) in the vicinity of GB to be disregarded. From
the calculations it is seen that the rate of impurity concentration growth in
GB ”core” decreases rapidly with time even at Dy > 1.5D,.

It means that the character of uy(x2) for short and long times of diffusion ¢
is practically the same. That is the reason that as for usual Fisher model the
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”core” of bicrystalline GB can be treated as a source of diffusant with constant
impurity concentration u,(x2) for diffusion of impurity into the grain bulk.
Thus, a deviation of real impurity profile uy (21, 22) from Fisher distribution
in the neighborhood of GB [1] will be determined mainly by the drift term in
(2). In calculations presented here, all grain-bulk diffusivities D, were defined
by the equation exp D(@) = D(()G)(—Q(G)/k:T) on the basis of activation en-
ergies Q%) and coefficients D(()G) for impurities taken from [7].Covalent radii
for crystal-matrices (Si,Ge) and impurities

(Sb, Al, B, O) were taken from [8]. Distances hqs between dislocations in real
bicrystalline GBs can be estimated from measurements of the density of elec-
trically active centers at GB plane. As is obvious from [9], the latter is usually
varied over the range 1012 —1014cm~2. Since the number of ”dangling” bonds
along a unit dislocation (which just create these active centers) should not ex-
ceed 107cm ™!, the number of dislocations per lem of GB length will not be
higher than 105 — 107. This means that the average interdislocation distance
at GB plane can be varied within 107° < hgs < 107"m.  The numerical
calculations of impurity profiles in the neighborhood of bicrystalline GB were
performed for the following matrix-impurity pairs: Ge < Sb >, Si < Al >,
Si < O >, Si < B >. For the first two pairs an elastic force is positive
(Fp > 0) and it will force out impurity of GB ”core” whereas for the last two
pairs Fy < 0 and impurity will be attracted to GB ”core”. When calculating,
the ratios Dy /D, were taken as 1.5 — 105 and the ”thickness” ¢ of GB ”core”,
in accordance with [1], was chosen as 10~%m. All calculations were performed
for the temperature 1000 K. The remaining values for calculations were taken
from [8]: rs; = 0.117nm, rg. = 0.122nm, ry; = 0.143nm, rg, = 0.141nm,
rg = 0.089nm, ro = 0.117nm; Gg; = 1.1011N/m2, Gge = 5.1011N/m?;
nsi = 0.25, nge = 0.35; DM = 3.648-10-2'm? /s, D} = 2.576-10~%m? /s,
D{P) = 1.646-10~22m2/s, D\?) = 1.365 - 10-1"m?/s; bg; = 0.543nm, bge =
0.566nm.
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Figure 3. 3. Ge < Sb > impurity profiles ug(z1) for different parameters calculated at
depth of 35 nm from interface source/bicrystalc

A computer code developed to simulate diffusion in terms of a modified
Fisher model enables the results of calculations to be presented as 3D picture
of impurity concentration distribution wy(x1,22) around GB, normalized to
the concentration of diffusant in a source ug. Besides, the computer code
makes it possible to derive from 3D picture 2D sections ug(z1) and uy(x2) for
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Figure 4. 4. Si < Al > impurity profiles ug(z1) for different parameters calculated at
depth of 35 nm from interface source/bicrystalc
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Figure 5. 3. si < O > impurity profiles ug(z1) for different parameters calculated at
depth of 35 nm from interface source/bicrystalc

different distances from interface bicrystal/source. An example of such 3D
picture with two 2D cross-sections for the pair Ge < Sb > is given in Fig.2.
The influence of parameters, defining diffusion of impurities in a bicrystal,
on the character of impurity profiles uy(21) in the vicinity of GB is studied
below. Figs. 3 and 4 present the results of computer simulation for pairs
Ge < Sb > and Si < Al > with Fy > 0. As is seen from Fig. 3a, when
diffusion time is increasing, a diffusant (Sb), coming some distance along GB
”core”, begins to penetrate into the grain. When the impurity arrives into
the grain, elastic force F(z1) (rapidly diminishing with distance z; by the
exponential law) repels it from GB ”core”. In consequence of this repulsion,
the diffusant moves in some region of the grain with a relatively higher veloc-
ity than in standard Fisher model. When F'(z;) becomes vanishingly small,
impurity atoms will continue to move in the grain-bulk by Fick‘s laws (as for
usual Fisher model). An increase of diffusion velocity in some region of the
grain results in the shift of u, (1) maximum from the GB ”core” (as for usual
Fisher model when F'(z;) = 0) into the grain depth. By so doing, the value of
ug(21)/uo maximum increases in time and the maximum moves deeper and
deeper into the grain (Fig. 3a). At constant diffusion time ¢ the value and
position of maximum wug(z1)/uo depends on the ratio Dy/D, (Fig. 3b) and
density of dislocations at GB ”core” (Fig. 3c). Note that for higher dislo-
cation densities (small hgs) an elastic force may be so strong that maximum
ug(x1)/uo becomes > 1 (curve 1 in Fig. 3c).This means that accumulation
of impurity at all the time is going in only a very narrow region of the grain
bulk (where force F(x1) is a factor). Comparison of results shows that the
shape of ug(z1) profiles for positive F'(z1) is mainly defined by the product
F(21)Dy which determines the proportion of diffusion and drift contributions
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for impurities transfer.Just due to this reason the shift of u,(z1)/uo maximum
deeper into the grain for the pair Si < Al > is exhibited only at high ¢ values
even for the lowest hys (see Figs 4a and 4c), as distinct from the behavior of
diffusion in Ge < Sb > bicrystals. This is conditioned by a very small value
of the product F(z1)D, in Si < Al > (by 6 order of magnitude lower than
for Ge < Sb >).

Let us consider the peculiarities of ug4(z1) profiles formation in the pairs of
Si < O > and Si < B > which are characterized by negative sign of elastic
force (Fp < 0). This implies that for these two pairs an elastic force will
attract impurity to GB ”core” preventing the ”spreading-out” of impurity
around GB, unlike the standard Fisher model. As calculations show, the
character of this ug(z1) ”compressing” is mainly dictated by the relationship
of drift and diffusion contributions to the impurity transfer. So for Si < B >
pair (whose F(x1)D, is nearly by 7 orders smaller than for Si < O >) the
profiles u,(z1) at moderate densities of dislocations (hgs ~ 10~%m) are merely
slightly diverged from the standard Fisher profiles. This implication is derived
from the fact that boron easily overcomes the action of elastic force retarding
the diffusion ”spreading-out” of a diffusant.

Referring to Fig. 5, for Si < O > pair a great value of F(x,)D, offers
outstanding distinction of u, (1) calculated by a modified Fisher model from
the usual Fisher profiles. In this case, although at a relatively small density
of dislocations (hds ~ 10~ "m), a part of diffusant (oxygen) overcomes the
force barrier (curve 3 in Fig. 5¢) and continues to be transferred in the grain
bulk with a high rate (due to high D), nevertheless concentration uy(x;) in
the bulk is relatively small even for high values of diffusion time (as for Si <
B > pair). Under these circumstances, uy(x1) profiles are characterized by a
specific bend (Fig. 5a) for long times of diffusion. At the same time, when hgs
decreases down to 10~%m, an elastic force of attraction to the dislocation wall
drastically increases hindering oxygen escape into the narrow near-boundary
layer and into the grain depth. In such a case, ug(z1) profiles are very similar
to the Si < B > ones for comparable hgs.

4. SUMMARY

Using a modified Fisher model we have shown that elastic stresses which arise
due to lattice mismatching of neighboring grains in a bicrystal GB exhibit the
radical effect on impurity transfer in the vicinity of GB. For a positive elastic
force F(x1), which rapidly diminishes with distance x1 by the exponential
law, impurity repelled from GB ”core” and maximum of profile uy(z1) shifted
from GB ”core” (as for the standard Fisher’s model) into the grain bulk. The
value and position of impurity profile therewith are defined both by the time
of diffusion and the product F(z1)D,. At the determined values of F(z1)D,
the impurity concentration in a very narrow region of the grain can exceed
its value co in the source, that is favored by impurity segregation which is
very often displayed in the experiments. By contrast, a negative elastic force



Mathematical modelling of impurity diffusion 67

F(x1) results in ”compression” of standard Fisher profiles conserving uy (1)
maximum at the GB ”core”.
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