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ABSTRACT

Degenerate matrix method for numerical solving nonlinear systems of ordinary di�erential
equations is considered� The method is based on an application of special degenerate
matrix and usual iteration procedure� The method� which is connected with an implicit
Runge�Kutta method� can be simply realized on computers� An estimation for the error of
the method is given�

�� INTRODUCTION

Many problems of physics and mathematics reduce to solving nonlinear sys�
tems of di�erential equations� Many classical methods for the numerical solu�
tion of such systems are developed� di�erent versions of Runge�Kutta method�
multistep Adam�s methods and so forth� If the solution of a system is very
smooth� for example� analytical� then high precision spectral or pseudospec�
tral methods can be used� All these methods have been programmed for
computers� In this paper we propose a method which we call the DM�method
�degenerate matrix method�� It is based on the global nonsaturated inter�
polations and on the application of special degenerate matrices in multistep
procedures by means of iterative loops� According to the character of ap�
proximation� the method proposed here is similar to the collocation version of
the spectral methods ���� However� these methods di�er essentially from each
other by numerical realization� Spectral methods use the discrete transforms�
while the proposed method applies the special pseudoinverse matrices and the
usal iteration process� DM�method can be presented also as implicit Runga�
Kutta method or a modi�cation of the collocation scheme� These methods
are given in ������ Mathematical algorithm for a solution has been represented
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in matrix form� Therefore� the method can be used for nonlinear systems of
arbitrary degree and simply programmed for computers� The rapid conver�
gence of the iteration process and the possibility to calculate the elements
of matrices by elementary representations with a very high precision gives
us the numerical solutions of di�erential equations with the precision near to
the working precision on computers� For example� calculations by means of
the software package �Mathematica��� give the possibility to �nd solutions of
nonlinear systems of di�erential equations with a precision of ����� or higher�

�� MATHEMATICAL BASIS OF THE METHOD

To obtain a numerical solution of the system

dyk
dt

� fk�t� y�� y�� � � � � ym�� yk�a� � �k� k � �� �� � � � �m �����

in the interval t � �a� b� we recommend the DM�method �degenerate matrix
method� based on an application of special degenerate matrices together with
iteration process� We start from Lagrange�s interpolation with nodes a �
t� � t� � � � � � tN�� � b� Let us assume that qN���t� is a polynomial� which
has zeroes ti� i � �� �� � � � � N � �� and the function y�t� is approximated by
Lagrange�s interpolation polynomial

y�t� � LN���y� t� � qN���t�

N��X
k��

y�tk�

�t� tk�q�N���tk�
� �����

Then the approximation

y�N�� ��N��yN�� �����

holds for the vector of derivatives

y�N�� � fy��t��� y
��t��� � � � � y

��tN���g
T �����

and for the vector of the functions

yN�� � fy�t��� y�t��� � � � � y�tN���g
T �����

contracted on nodes ti� Here �N�� is the �N � �� � �N � �� interpolation
matrix for derivatives which has elements ���

�ik �
q�N���ti�

�ti � tk�q�N���tk�
if i �� k� �kk �

q��N���tk�

�q�N���tk�
� i� k � �� �� � � � � N � ��

���
�
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The interpolation matrix for derivatives �N�� is always degenerate and
rank�N�� � N � �� As the matrix �N�� has no inverse� we de�ne the fol�
lowing pseudoinverse matrix�

Definition ���� Matrix BN�� is called a pseudoinverse matrix for �N�� if
the equality

BN���N�� � EN�� � IN�� �����

holds� where EN�� is the identity matrix and all elements of IN�� are zeroes
except each element of �rst column is the digit ��

Contracting the system ����� on nodes ti and replacing derivatives by �����
we reduce this system into the following matrix form

�N��Y�N � ��m� � F�N � ��m�� ���	�

whereY�N���m� and F�N���m� are �N����m matrices with the elements

yik � yk�ti� and fik � fk �ti� y��ti�� y��ti�� � � � � ym�ti�� � �����

respectively� Multiplying the equation ���	� from the left side by a pseudoin�
verse matrix BN�� � hGN��� we obtain

Y�N � ��m� � hGN��F�N � ��m� �Y��N � ��m�� ������

Here Y� is matrix �N ����m� its elements are the inital values of unknown
functions yk�a� � �k given by ������ i�e��

y
���
ik � �k� i � �� �� � � � � N � �� k � �� �� � � � �m� ������

The system ������ can be solved iteratively if a norm of the matrix BN�� is
small enough� The properties of the solution of ������ depend on the choise of
the nodes ti and the matrixBN��� The most important properties of matrices
�N�� and BN�� are the following�

Lemma ���� Substituting t � �x�� and ti � �xi�� leads to multiplying the
matrices �N�� and BN�� by factors � and ���� respectively�

Lemma ���� Elements dik�m� of the m�degree matrix �N��� i�e�� of the ma�
trix �m

N�� are exact representatoins

dik �
m�

q�N���tk�

m��X
j��

����jq
�m�j�
N�� �ti�

�m� j���ti � tk�j��
if i �� k�
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dkk�m� �
q
�m���
N�� �tk�

�m� ��q�N���tk�
� i� k � �� �� � � � � N � �� ������

Proof of this Lemma is given in ����

Lemma ���� Matrix �N�� has the representation

�N�� � �DVN���V
��
N��� ������

where VN�� and DVN�� are the Vandermonde matrix and its derivative
respectively to nodes t�� t�� � � � � tN���

Proof� For any polynomial PN���t� the formula P �
N�� � �N��PN�� is ex�

act� Taking PN�� equal to �� t� t�� � � � � tN��� we obtain the equalities� which
may be joined in one matrix equality

�N��VN�� � DVN��� ������

Multiplying ������ from the right side by the matrix V��
N��� which exist be�

cause t�� t�� � � � � tN�� are di�erent numbers� leads to ������� �

Lemma ���� Matrix �N�� is degenerate and the rank�N�� � N � ��

Proof is gained from the Lemma ����

Lemma ���� A pseudoinverse matrix BN�� is not unique for the given matrix
�N��� The general form for the elements bik of BN�� is

bik � b
���
ik �

ci
q�N���tk�

� i� k � �� �� �� � � � � N � �� ������

where b
���
ik �

�

q�N���tk�

Z ti

t�

qN�����

� � tk
d�� ����
�

and ci are arbitrary constants not depending on k�

Proof� At �rst we prove that the matrix B
���
N�� with elements ������ satis�es

the matrix equation ������ Integrating the identity

P �
N���t� � qN���t�

N��X
k��

P �
N���tk�

�t� tk�q�N���tk�
������

on the interval �t�� t� leads to

PN���t�� PN���t�� �

N��X
k��

P �
N���tk�

q�N���tk�

Z t

t�

qN�����

� � tk
d�� ����	�
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Contracting this equality at nodes ti and writing ones in the matrix form� we
can obtain

PN�� � B
���
N��P

�
N�� � PN���t���N��� ������

where �N�� � ��� �� � � � � ��T � Substituting P�N�� � �N��PN�� gives the
matrix equation

�B
���
N���N�� �EN�� � IN���PN�� � � ������

for each polynomial PN���t�� It follows that the matrix B
���
N�� is a pseudoin�

verse matrix for�N��� Let us the vector wN�� is a nontrivial solution of the
equation wN���N�� � �� By means of the equality

X
k ��i

�

tk � ti
� �

q��N���ti�

q�N���ti�
� ������

it is possible to prove directly that one of the nontrivial solutions is

wN�� � �
�

q�N���t��
�

�

q�N���t��
� � � � �

�

q�N���tN���
�� ������

�

Corollary ���� The general form for the pseudoinverse matrix BN�� cor�
responding to �N�� is

BN�� � B
���
N�� � diag�c�� c�� � � � � cN���WN��� ������

where elements of B
���
N�� are given by ����	
� elements of WN�� are wik �

��q�N���tk�� i� k � �� �� � � � � N � �� and ci are arbitrary constants� The choise
of ci allows to use various pseudoinverse matrices for the given matrix �N���

Lemma ���� For elements bik of each pseudoinverse matrix BN��� in the case
of N � � the following equalities hold

N��X
k��

bik � ti � t�� i � �� �� � � � � N � �� ������

Proof� We have for b
���
ik by ����
� and ����� with y�t� � �

N��X
k��

b
���
ik �

Z ti

t�

N��X
k��

qN�����

�� � tk�q�N���tk�
d� �

Z ti

t�

d� � ti � t��
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For the bik in general equalities hold by the ������ and by the identity

N��X
k��

�x� tk�
m

q�N���tk�
� ��m � �� �� � � � � N� ������

and arbitrary x� The identity ������ can be proven using the classical Cauchy
residue theorem for the contour integral in the following way�

N��X
k��

�x� tk�
m

q�N���tk�
�

N��X
k��

res�
�x� z�m

qN���z�
� tk� �

�

��i

I
L

�x� z�mdz

qN���z�
� �res�

�x� z�m

qN���z�
��� � ��

where L is a closed contour in the complex z�plane which includes strictly in
itself the points tk� �

Lemma ��	� For the norm of each pseudoinverse matrix BN�� with elements
�����
�����	
� we have the inequality

kBN��k �� max
��i�N��

N��X
k��

jbikj � tN�� � t��

Proof� kBN��k � max j
PN��

k�� bikj � max jti � t�j � tN�� � t�� �

Futher we choose the nodes ti and the corresponding pseudoinverse matrix
BN�� to ensure the following two properties�
�� The approximation of functions is nonsaturated� that is� the rate of the

convergence increases together with the smoothness of functions under the
approximation�
�� kBN��k � tN�� � t�� that is� the norm is the minimal possible�
The �rst property guarantees that an error for the smooth solution under

approximation is small� but the second one allows to eliminate round�o� errors
by the increasingN � These two properties hold true if we choose� for example�
ci � �� i � �� �� � � � � N � � �the method is a collocation method ���� and

ti � a� ����b� a��� � xi�� xi � cos
i�

N � �
� ����
�

Elements bik for the matrix BN�� are present in the form bik � �b � a�gik�
where

gik �
�

�p�N���xk�

Z xi

��

pN���x�

x� xk
dx� pN���x� � ��� x��UN �x�� ������
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UN �x� is the Chebyshev�s polynomial of the second kind� The elements gik
do not depend on the interval �a� b� and

kGN��k � max
��i�N��

N��X
k��

jgikj � �� ����	�

Moreover� the elements gik have the following simple exact representations by
elementary functions which are very suitable for calculations by computers
with any desired precision�

gi�� �
�N� � �N � �� ����i��N � ���xi �N�N � ���

�N�N � ����N � ��
� ������

gi�N�� �
����N��f� � ����i��N � ���xi �N�N � ���g

�N�N � ����N � ��
� ������

gik �
�

�N � �� sin 	k

NX
n��

s�i� n� sin �n� ��	k� ������

where i � �� �� �� � � � � N � �� k � �� �� � � � � N�

s�i� n� �
cos�n� ��	i
��n� ��

�
cos�n� ��	i
��n� ��

�
cos �n� ��	i
��n� ��

�
�

�n� � ���n� ��

if n � � and

s�i� �� � �� � xi�
���� xi���� s�i� �� � ��� x�i �

����

	i � �i��N � ��� xi � � cos 	i�

Now we obtain instead of ������ the equation

Y�N � ��m� � hGN��F�N � ��m� �Y��N � ��m�� ������

Due to the equality kGN��k � �� the su�cient condition for convergence of
the iteration process is the inequality hL � �� where L is a Lipschiz�s constant
for the system ����� on �a� b�� This condition guarantees that the nonlinear
operator hGN��F�N � ��m� in ������ is a contracting operator mapping the
space of �N � �� � m matrices into itself� For the large interval �a� b� it is
necessary to divide it into small enough parts a � h� � h� � � � � � hn � b�
and to solve the system ����� in each subinterval �hl� hl���� l � �� �� � � � � n� ��
separately� In addition� the solution at the points t � hl�� must be choosen as
an initial value for the solution in the next interval �hl��� hl���� The matrix
GN�� does not change� but the new nodes tk� k � �� �� � � � � N � � may be
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calculated by ����
� with a � hl� b � hl�� and h � hl���hl� Thus� the global
solution for system ����� can be found by using the aforementioned multistep
procedure involving iterative loops�
Comentaries� �� In practice the condition Lh � � or the choice of step h can

usually be determined by means of analysis of the rate of convergence in the
iteration procedure� Also� the number of relevant iterations can be chosen in
various ways� For example� until the �xed point is reached� until the required
precision is attained� and so forth�
�� The step h and the number N of interior nodes on the subinterval

are independent of each other� By repeating calculations of the solution for
various N and comparing the obtained results� we can also make a conclusion
about the precision of the �nal result�
�� If certain functions of the solution increase �decrease� rapidly� then

the Lipschitz constant can be reduced for the next step by a substitution
yi�t� � exp�
it�vi�t�� i � �� �� � � � �m� with suitable constants 
i� Thus� it is
possible to choose a larger step for this case�
�� DM�method can be used as a starting method for multistep methods�

�� THE ESTIMATION OF THE ERROR OF THE METHOD

The precise solution yk�ti� and rough solution  yk�ti� of ����� contracted on
nodes by ����
� satisfy the matrix equations

Y�N � ��m� � hGN��F�N � ��m� �Y��N � ��m� �R�N � ��m�� �����

�Y�N � ��m� � hGN��
�F�N � ��m� � �Y��N � ��m�� �����

respectively� where elements of matrix R�N � ��m� are

rik �

Z ti

t�

RN���fk� ��d�� �i � �� � � � � N � �� k � �� � � � �m�� �����

and RN���f� t� � f�t�� LN���f� t� is the remainder of Lagrange�s interpola�
tion ����� with nodes ����
�� where fk�t� � fk�t� y��t�� � � � � ym�t��� Further� we
will suppose that the functions yk�t� and fk�t� are elements of some function
space Cs�t�� tN���� The elements rik can be estimated in various way� Let
us assume that� for all i� k� jrik j � h��N� h� holds� Then according to the
nonsaturatedness of the interpolation ��� we have

��N� h� �
Ms ln�N � ��

�N � ��s��
� �����

Here Ms is a constant which does not depend on i� k�N � For small h �
tN�� � t� we have

��N� h� � h��
Z tN��

t�

jRN���fk� t�jdt � O�hN��� �����
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as an estimation for the remainder of an interpolating quadrature�
We denote a norm of the error�matrix by

�N � kY�N � ��m��  Y�N � ��m�k �� max
��i�N��

mX
k��

jyk�ti��  yk�ti�j� ���
�

and also suppose that the iteration process goes on until the �xed point is
reached� Taking into account the condition Y� �  Y� the error of the solution
can be estimated on the �rst step in the following way�

�N � q��N� h��L� where q �
mhL

��mhL
� �����

Now suppose that we realize n equal steps and nh � b � a� If �
�j�
N � �j �

�� �� � � � � n� is the norm of error�matrix on the j�th step de�ned analogously as

in ���
�� then the following recurrence inequality can be proved for �
�n�
N after

a simple but lengthy conversion�

�
�n�
N � q

n��X
j��

�
�j�
N � nq��N� h��L� �

���
N � �N � ���	�

Solving these inequalities we obtain

�
�n�
N � nq�� � q�n����N� h��L� �n � �� �� � � ��� �����

where ��N� h� and q are given by ����������� and ����� respectively� Therefore�
by ����������� and ����� we conclude that if � � mhL � ��

�� �
�n�
N � O�hN��� as h	 �� N is �xed�

�� �
�n�
N � O

�
�N � ���s�� ln�N � ��

�
as N 	 ���

The O�character of the error can be observed by practical calculations too�
For example� we consider numerical results for the Lorenz�s system

��
�

!x � ��y � x�
!y � rx� xz � y � � ��� r � �	� b � 	��
!z � xy � bz

������

with the initial values x��� � �
���� and y��� � z��� � � in the interval
t � ��� ��� The solution at point t � � obtained by means of the DM�method
with precision of ����� is

x��� � �����	��
�


 	��	
����� 
�
������
 ���	�����	 �����	�	��

y��� � �����
�
���	� ��
�	��
�� ��������	� ��	�
��
�� ��
	���
��
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Table ��

Numbers of the correct decimal places of the solution�

N�h ���� ��� ��� ���� ����� ���� ����� ������

� ��� ��� ��� ��� ��� ���� �����
	��
 	���
 	�
 	��
 	��
 	��
 	��


� ��� ��� � ��� ���� ����� ����� �����
	���
 	���
 	��
 	�
 	��
 	��
 	��
 	��


�� ��� ��� � ����� ���� ����� ���� �����
	���
 	���
 	�
 	��
 	�
 	�
 	��
 	�


�� ��� �� ����� �� ����� ����� ���� �����
	���
 	���
 	��
 	��
 	��
 	��
 	��
 	��


�� �� ����� ����� ����� ���� �� ���� �����
	���
 	�� 	�
 	��
 	��
 	��
 	��
 	��


�� ���� ����� ���� ����� ����� ����� �����
	���
 	�
 	��
 	��
 	��
 	��
 	��


�� ����� ����� ����� ����� ����� ����
	��
 	�
 	��
 	��
 	��
 	��


�� ����� ����� ����� �����
	�
 	��
 	��
 	��


z��� � �	���	������� 	�	���	��� ����		��	� 
��
	����
 �����������

To eliminate the possibility of round�o� errors we have calculated elements
gik of matrix GN�� with a precision � � ������ The computation was done
with various steps h and numbers N of nodes on each subinterval� The results
are showed in the Table �� where numbers on the �rst line show the correct
decimal places of the solution at point t � � for each h and N � Numbers on
the second line in parentheses show the maximum number of iterations made
on each of n subintervals with nh � ��

�� DM�METHOD WITH NODES AS ZEROES OF THE GEGEN�

BAUER POLYNOMIALS

We will consider a sheme where the nodes are the set of zeroes of the Gegen�
bauer polynomials C�

N �x� that can be extended with endpoints 
�� There it
is four cases� �� � x�� x� � � � � � xN � �� �� � x� � x� � � � � � xN � ��
�� � x� � x� � � � � � xN � xN�� � �� �� � x� � x� � � � � � xN �
xN�� � �� Here xk� k � �� �� � � � � N are zeroes of the polynomials C�

N �x�� Let
us choose the case ��� Pseudoinverse matrices can be obtained by formulas of
Section � if we replace N � � for N � �� Thus�

BN�� � B
���
N�� � diag�c�� c�� � � � � cN �WN��� �����
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where elements of the matrices B
���
N�� and WN�� are

b
���
ik �

�

p�N���xk�

Z xi

��

pN�����

� � xk
d�� wik �

�

p�N���xk�
�

i� k � �� �� � � � � N� pN���x� � �� � x�C�
n �x�� �����

Using ������ and ����� in the case of one equation y� � f�x� y�� we obtain�

yN�� � y�� � �B
���
N�� � diag�c�� c�� � � � � cN �WN���fN��� �����

where yN�� � �y�� y�� � � � � yN �T � fN�� � �f�x�� y��� f�x�� y��� � � � � f�xN � yN ��T �

� � ��� �� � � � � ��T � yk � y�xk�� k � �� �� � � � � N�

In order to create the sheme with a higer�order precision for yN�� � y�xN��� �
y��� at the endpoint� we use the following idea� Multiplying the equation
y� � f�x� y� by �� � x�������� 
  ���� integrating it on the interval ���� ���
applying the integration by parts and the Gausa�Lobatto quadrature formula
at the nodes �� � x�� x� � � � � � xN � xN�� � �� lead to

mN��yN���m�y��

NX
k��

mkxkyk � ��
�����
NX
k��

mk���x�k�f�xk� yk�� �����

where mk  � are coe�cients of quadrature� which can be represented by the
Gegenbauer polynomials� Using ����� and taking account that mN�� � m��
we obtain

yN�� � y� �
NX
k��

bkxkyk � ��
� ����
NX
k��

bk��� x�k�f�xk � yk�� �����

where bk � mk�m�� k � �� �� � � � � N � The constants ci in ����� are arbitrary�
For example� we can choose ci � �� The choice of the constant c� gives a
possibility to make the Dalquist function of the stability R�z� given in ��� so
that
�� jR�z�j � �� if Rez � �� �� R��� � �� This ensure the L�stability of

the method regardless the choise of the other constants c�� c�� � � � � cN � It is
possible also to choose constants ci in the other way�
Concluding remarks� Formally� the DM�method can be used at the nodes

����
� with arbitrary distributed xi satisfying the inequalities �� � x� � x� �
� � � � xN�� � �� if elements of the matrix GN�� are calculated by ������ with
pN���x� � �� � x���x � x�� � � � �x � xN �� However� in the generalal case the



�
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equality ����
� does not hold and the approximation is not nonsaturated� We
mention some interesting special cases�
�� The nodes xi are distributed on ���� �� uniformly� In this case kGN��k

increases together with N for N  	� and the DM�method becomes unstable�
Therefore� the DM�method can be used in the case of uniformly distributed
nodes only with small N � for example� with N � 	�
�� xi are zeroes of TN �x� and endpoints 
�� where TN �x� is Chebyshev�s

polynomial of the �rst kind� In this case kGN��k � � � �N � and �N 	 �
as N 	 ��� The corresponding approximation is also nonsaturated� The
DM�method can be used with precision near to the case with nodes as zeroes
of Chebyshev�s polynomials of the second kind�
�� xi are zeroes of Legendre�s polynomial PN �x� and endpoints 
�� In

this case kGN��k � �� the approximation is also nonsaturated and the preci�
sion of the DM�method is near to the precision in the case with Chebyshev�s
polynomials�

�� xi are zeroes of Jacobi�s polynomial P
�����
N �x� and endpooints 
�� In

this case kGN��k � �� the approximation is nonsaturated� but the preci�
sion of the DM�method is higher than for Chebyshev or Legendre polynomi�
als� This follows from the other estimation for ��N� h� in ������ In this case
��N� h� � O�h�N��� as an estimation for the remainder of the Gauss�Lobatto
quadrature�
�� The choise ci � �� i � �� �� � � � � N � �� and xi the same as in �� leads to

the Lobatto �A sheme ���� The method is A�stable� but not L�stable�
Choosing xi as above and

ci �

Z �

xi

��� x�P
�����
N �x�dx� i � �� �� � � � � N � �� ���
�

lead to the Lobatto �C method� The stage of this method is N � �� Similar
method with N � � is given in ��� and it is proven that this method is
algebraically stable� It is possible to obtain other schemes by choise of the ci�
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