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ABSTRACT

The Fourier - asymptotic approximation can be obtained for different types of Fourier
series by replacing the Fourier coefficients with their asymptotic (n — +o00)
approximations beginning with some index n.

We obtain some generalization of the classical Galerkin method for the solution of
boundary and spectral problems of ordinary differential equations. The numerical
examples show that the addition of asymptotic correction allows us to obtain a high
accuracy of results.

1. INTRODUCTION

The representation of a function in the form of some Fourier series is often
used in theoretical constructions. The numerical values of a such function
are obtained restricting these Fourier series to the partial sums. Thus, it is
supposed that beginning with some index n all Fourier coefficients are annuled.

The main idea of the Fourier-asymptotic (F-A) approximation is that start-
ing with some index n we substitute the Fourier coeflicients with their asymp-
totic (n — +00) approximations.

Let the function v = v(z) can be expanded in the Fourier series

+oo
v(z) = Z crug(T), z € (0,1), wug(z)=sinknrz, (1.1)
k=1

cr = 2/0 v(x)ug (z)dz. (1.2)

If we use the partial sum U = Y_}'_; cyuy for the approximation of func-
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tion v, then the equality v = U + r hold. The error of the approximation
r = EZ:;H cpuy is the remainder of the Fourier series. For example, if the
estimate ¢y = O(1/k®), k — +oo hold, then the error satisfy the relation
r=0(1/n), n = +oc.

Let we have the asymptotic approximations of Fourier coefficients in the
form:

" 1

n=2

where m > 2 is the order of asymptotic approximation. Then, if we substitute
the Fourier coefficients in the remainder r = Ej:ojl 41 Crug With their approx-
imations (1.3), we get the F-A approximation of the function v in the form
v=U+A+R, where A =31, oy S uk(z)/k* is a known function.
The function A we call the asymptotic correction. It is obvious that for the
error of F-A approximation R the estimate R = O(1/n™), n — 400 is valid.
Therefore, we can obtain a high accuracy of the result for small values of the
parameter n, increasing the order of asymptotic approximation m.

The methods of asymptotic approximations for Fourier coefficients are well
known in many classical cases [3].

Let the function v = v(z) be smooth enough, except the point z = 7 € (0;1)
in which the function v = v(z) and its derivatives can have the discontinuities
of the first kind (Avy, = v®) (7 4+ 0) — v¥) (1 — 0)). We find the asymptotic
approximations (1.3) for the Fourier coefficients ¢y with the help of 2m + 2
times integration by parts in the representation (1.2). Finally, we have the
following F-A approximation for the function v(z): v =U + A+ R, where U
is the partial sum of Fourier series (1.1);

- z+1 T
A=23 (V0 () = Ok )
e r+T T—2x
+ Z (—1)“+15H+1|Avu ﬁuﬂ(T) — But1( 5 )] , (1.4)
=0
+00
Boul) = (=1L S (=) cos2nka,
k=n+1
(1.5)
Bops1(z) = (=1)r+t &o:o ("T“)zu+1 sin 2rkx;
k=n+1

fams2(5 D) = Bomia (T ) | Ay (16)

1
R= 82m+2/0 ,U(2m+2) (y)
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and e =1/(r(n+1)), m=0,1,....

The F-A approximation consists of 1) the partial sum U of Fourier series, 2)
the asymptotic correction A and 3) the explicit integral representation for the
approximation error R. The asymptotic correction is lying in the ortogonal
complement of the linear span of basic functions {uy}7 and is determined with
the help of an additional analytic information about the approximate function
v = v(x): 1) the values of its derivatives of even order at the endpoints, 2)
the jumps of function v(z) and its derivatives at the discontinuity point of the
first kind z = 7.

The functions S (z) can be expressed with the help of the Lerch transcen-
dent functions ®(z,s,a) = Y775 2" /(a + k)* 2.

The F-A approximation is an asymptotic approximation with respect to the
small parameter € = 1/(m(n + 1)). Here n is the number of summands in the
partial sum U of the Fourier series. The error of approximation R satisfies
the estimate R = o(e>™*?), n — +oo.

Therefore, the F-A approximation is applicable to the supported class of
functions. But we can use more detailed information about analytical prop-
erties of function v. Let the function v(z) be the solution of an ordinary
differential equation. Then we obtain the derivatives of higher order of func-
tion v(z) (which are necessary for the construction of asymptotic correction
A) from the differential equation.

We give some examples that illustrates the application of F-A approxi-
mation for the solution of ordinary differential equations. We consider the
problem of the Green function approximation, the solution of spectral prob-
lems and the solution of boundary problems for nonlinear equations. We
construct the generalization of the classical Galerkin method for the solution
of corresponding problems on the basis of F-A approximation.

2. APPROXIMATION OF THE GREEN FUNCTION

Let us regard the problem of Green’s function G = G(z,7) determination:

{ G, +w@)G=0z—-71), T€(0,1),

2.1
G|x:0 = G|m:1 = 07 ( )

where § = §(z) is the Dirac d-function. We seek the Green function in the
x)

form G = p(z, 1) + v(z,7), where
— (T - 1)1‘ ’ O<z <,
pla,m) = { m(x—1) T<z<l. (2:2)
For the determination of function v(z, ) we obtain the problem:
n
v tw(@w=—w@)e(r,T7), v|g=o=v|s=1 =0. (2.3)

Trr
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We assume that the function w = w(z) is smooth enough and we don’t indicate
the dependence of v on the variable 7, that is v = v(z). We determine this
function with the help of F-A approximation.

The function v = v(z) is the solution of problem (2.3). Hence, all its deriva-
tives of higher order, which are necessary for the construction of asymptotic
correction A, can be expressed with v and its derivative of the first order v.:

! !

v(k)(:n):qk(x)(<p+v)+pk(w)(<pm+vm), z#£1, k=23,..., (24)

where ¢, and pg are defined with the recurrence relations:

{qu(x):q,;(x)—w(x)pk(x), Pr1 (@) = qr(z) + p,, (@), 25

dk
k=2,3,..., @2(z) = —w(z), p2(x)=0.

Finally we have the following F-A approximation of the Green function:

G=W+R, W=¢+U+A4, (2.6)

where U is the partial sum of the Fourier series. The asymptotic correction
A is following:

A= Q( 0) — 2Q(z,1) + Q(z, 1),

s=G. L (0,7), z2=G (1,7),

2m+1

Ve, 7) = 3 (=D pu(r) [Bur1 (557) = Bua (F59)] -

n=3

(2.7)

The error of the approximation is defined as

R=R(z,7) = 2™ [ ®opin(t,7) [Bomsz(BEL) — Bomsz(Z50)] dt,
(§2m+2 (t, 7') = (2m+2 (t)G(t, 7') + D2m+2 (t)Gt (t, 7'), g = ﬁ
(2.8)
The F-A approximation (2.6) together with the error of approximation
satisfy the boundary conditions of the problem (2.1). The F-A approxima-
tion gives us the possibility of a priori choice of parameters n and m val-
ues. This analysis is based on the investigation of the ”velocity of decrease”
for the sequences £*|g,(z)| and e*|p,(z)|, p = 2,3,...,2m + 2 (see Table
5). If the sequences decrease slowly, then it is necessary to extend n, since
e=1/(r(n+1)).
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We must find the values of s = G,(0,7), z = G,(1,7) and the Fourier
coefficients ¢y, ¢s,...,c, in the approximation (2.6). We obtain the system
of n + 2 equations for the determination of these parameters. The first n
equations are obtained by applying the ordinary Galerkin scheme, the last
two equations are obtained by the differentiation of approximation (2.6) with
respect to x and substitution of x = 0 and z = 1. Therefore, we get some
generalization of classical Galerkin method. Approximation (2.6), (2.7) has
the following property. If the value of parameter n is fixed and we increase
the order of asymptotic approximation m, then the number of free parameters
co,---,Cn, s and z is not increased. In this case the approximation function 2
changes so that we obtain a more accurate result. The cause of this property
is that we get all derivatives of higher order (which are necessary for the
asymptotic correction A) from the given differential equation.

Example 1. Let w(z) = ax + b. Then the Green function G(x,7) can be
expressed with the help of the Airy functions.

Tablel. 7=08, a=0.8, b=-05 n=0

x | 0.2 0.6 0.8 0.9 m
G | —3.93949-10"2 | —0.1197029 | —0.1601757 | —8.017065-10"2 | —
W | —3.93937-10~2 | —0.1197009 | —0.1601731 | —8.016920-10~2 | 3
W | —3.93959- 102 | —0.1197043 | —0.1601751 | —8.017029-10"2 | 6
W | —3.93959- 102 | —0.1197098 | —0.1601751 | —8.017028-10~2 | 12
Table2. 7=08, a=2.1, b=10, n=0

x | 0.2 0.6 0.8 0.9 m
G | —5.629675-10"2 | —0.1540872 | —0.1849851 | —9.382869-10 % | —
W | —5.881873-1072 | —0.1582060 | —0.1875406 | —9.517408-10=2 | 3
W | —5.514153- 1072 | —0.1521920 | —0.1838060 | —9.320741-10"2 | 6
Table 3. 7=0.8, a=2.8, b=1.0and different n, m

x | 0.2 0.6 0.8 0.9 n/m
G | —6.008587-10% | —0.1623818 | —0.1911455 | —9.725691-10 2 | —
W | —5.554543-10=2 | —0.1548930 | —0.1864750 | —9.479377-10=2 | 0/6
W | —6.008588-10"2 | —0.1623818 | —0.1911454 | —9.725698-102 | 2/7
W | —6.008587-1072 | —0.1623818 | —0.1911454 | —9.725698-10=2 | 5/3
W | —6.008587-10~2 | —0.1623818 | —0.1911454 | —9.725698-10"2 | 1/12
Table4. 71=0.3, a=16, b=8 and different n, m

x | 0.2 0.3 0.6 0.8 n/m

G | 0.0292836 | 3.989039-10=2 | 0.2726635 | 0.2202688 | —

W | 0.0292837 | 3.989062- 102 | 0.2726636 | 0.2202691 | 3/12

W | 0.0292838 | 3.989069 - 10—2 | 0.2726637 | 0.2202689 | 5/6
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If absolute values of a and b are small, we obtain a high accuracy of the
approximation even with n = 0 (Table 1). When the absolute values of a and
b are increased, the accuracy of the approximation with respect to n = 0 falls
(Table 2). It is necessary in this case to increase the value of n (Tables 3 and
4). We choose values for the parameters n, m and make a priori estimate of
accuracy with the help of numerical analysis for the ”velocity of decrease” of
the sequences e*g,(z) and e*p,(z).

In Table 5 are presented the values of members of the sequence are presented
e#p,(z) for different n.

Table 5.  etp,(z), =7, a=28, b=1 7=08

E 1 4

'p, | —0.104495 —5.748949- 102 | —5.905703-102 | n =0
L |3 8 25

eip, | —1.306187- 102 | —1.452079-10~* | —1.663331-10° | n =1
© |3 1 14

ehp, | —3.870184- 103 | —7.097470 - 10~7 | —1.234736-10° | n =2
© |3 4 7

'p, | —4.837731-10 * | —4.435919-10 ° | 5.249955-10 ° | n=5

3. SOLUTION OF SPECTRAL PROBLEMS
We consider the eigenvalue problem:

v" +w(z, \v(x) =0, z€((0;1), v(0)=v(l)=0 (3.1)

If we apply the F-A approximation for the solution of equation (3.1), then
we obtain the representation: v = U + A + R, where A(z,\) = sw(z,A) —
zg(xz, \) and

w(m, >‘) = -2 Z 52”+1p2u (Oa A)ﬂ?u-ﬁ-l (g)v s = vl (O)v (32)
n=2
o) = =23 (LB (Ta D), 2=0(1),  (33)
n=2

52m+2(x;y)—52m+2($§y) dy, (3.4)

1
R(:L’, A) = €2m+2 / (I>2m+2 (ya A)
0

(I>2m+2 (ya A) = {2m+2 (y, )‘)U(y) + P2m—+2 (ya A)’Ul (y)7 €=
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The sequences {qx } and {pi} can be determined with the help of recurrence
relations:

g2 = —w(a:,)\), D2 = 0

Qi1 (7, 0) = Tqi(z, X) — w(@, Npi (2, ), (3.6)

pk+1(m7>\) = Qk(m,A) + %pk(waA)

Again, it is possible to select apriori the values of the parameters n and m
when we analyze the ”velocity of decrease” for the sequences e*g, (z,\) and
e*pu(x, A). The optimal values of parameters n and m depend essentially on
the domain of variable A in which we seek the eigenvalues.

The details of constructions are similar to the previous example. Finally,
we obtain some generalization of the Galerkin method for the determination
of eigenvalues and eigenfunctions.

Example 2. Let w(z,A) = ax + A, where a € R. In table 6 we show
the first two eigenvalues for the parameter a = 5, a = =7, a = —17 and
their approximations with the computational Galerkin method for n = 2. In
the last four rows we show the results of F-A approximation for n = 2 and
different values of m.

Table 6.
a=>5 a= -7 a=—17
A1 Ao A1 Ao A1 Ao

7.342186 | 36.98655 | 13.31589 | 42.99436 | 18.05433 | 48.07121 | exact
7.342234 | 37.00579 | 13.31601 | 43.03202 | 18.05623 | 48.29179 | Galer.
7.342190 | 36.99809 | 13.31591 | 43.01693 | 18.05470 | 48.20333 | m =3
7.342186 | 36.99124 | 13.31589 | 42.99948 | 18.05429 | 48.08890 | m =5
7.342186 | 36.98804 | 13.31589 | 42.99702 | 18.05432 | 48.06232 | m =7
7.342186 | 36.98694 | 13.31589 | 42.99484 | 18.05433 | 48.06008 | m =9

Example 3. Let w(xz,\) = Az. In Table 7 we show the first eigenvalue Ay,
its approximation with Galerkin method for n = 2 and the results of F-A
approximation for n = 2 and different values of m.

Table 7. Table 8.
A1 A1 Ao
18.95626 exact 6.4075 28.437 Collatz
18.96146 | Galerkin 6.414262 | 29.34737 | Galerkin
18.95950 | m =2 6.407765 | 28.86608 | m =2
18.95643 | m =4 6.407703 | 28.61269 | m =4
18.95615 | m =6 6.407703 | 28.43717 | m =10
18.95627 | m =38 6.407703 | 28.43717 | m =18

The proposed algorithm can be easily generalized for the case when the

function w(z, A) has a discontinuity of the first kind with respect z.
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2, 0<z<1/2
1, 1/2<z<1" We
show in table 8 the first two eigenvalue A; and A, which are given by Collatz
[1]. In the second row we present their Galerkin approximations for n = 2. In
the next rows the results for n = 2 and different m are given.

The numerical experiments show that, if the approximation is possible for
small n, then we can obtain a high accuracy of results by increasing m.

This fact allows us to apply the F-A approximation to the analysis of non-
linear equations.

Example 4. Let w(z,\) = Aw(x), where w(z) = {

4. SOLUTION OF NONLINEAR EQUATIONS

Let us consider the following boundary problem:

yB =wy+ty’ + fo, 2 (0:1), Y(O0)=z y1)=s  (41)

where w, t, fo, z, s are parameters. We seek the solution of equation (4.1) in
the form

y(x) = H(z) +v(z), H(z) = zx + (s — 2)2°/2. (4.2)

We determine the new function v(z) with the help of F-A cosine approxi-
mation. Such an approximation can be constructed in the same way as the
F-A sine approximation. We consider the parameters n = 1 and m = 3. Then
we obtain the following F-A approximation for the solution of equation (4.1):

y(x) = H(z) + co + ¢1 cosmx + A(z) + R(z), (4.3)

- ngw (s 980 D) = s (e, 18 5)) . (00

0 =& [ el o) |5 4 (G )
here

ws(y,y’)zwy +2tyy :

05(y,y') =w?y' +10wtyy’ +10t%y%y +6tf0y’,
er(y,y")= w3y'+42w2tyy +120wt2
+80t3y3y’ + 36wt foy' +20t2y">,

(4.6)

=1/(2m), k= y(0), o=y(1). (4.7)
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It should be noted that the functions ¢y (y,y') = y*) are obtained with the
help of a successive differentiation of the equation (4.1).

The integral representation (4.5) allows us to determine a priori the domain
of variation for the basic parameters of our problem: w, t, z, s, fo. In this
domain we can disregard the error of approximation R(z) and regard the
values of function A(z) as small. The absolute values of basic parameters
must not exceed ”substantially” the values of the selected parameters n = 1
and m = 3.

We have a system of four equations for the determination of the Fourier
coefficients ¢g, ¢; and the values of variables k = y(0), o = y(1). We obtain
the first two equations with the help of the Galerkin method:

2 2
Py + Py = 9o, 4.8
{ (po+a)pr = g1, (48)
where
7T2p0—w 7T2p1 2
S 2 = — 4
o 57 (s+22), ¢ ot + =z +53), (4.9)
w? A4t 82 [74 —90 9 9 Tt — 720 4¢2
QO—F—F(Z—S‘FJCO)——B 9 (27 +57) 360 25| T 0
t 2t
a:1+w(8—2)+ﬁ(A1+R1),
2V/2t V2t2 472 — 39 2v/22
e R e =8

o = / [2H () (A(x) + R(z)) + (A(x) + R(2))?] da,

n= / [2H () (A(x) + R(a)) + (A(w)+ R(2))] cos mada-+ 5 (=+5) (A1 +Ru),

3
A =) (D) (01 (0,8) — @aumi (K, 2)),

p=2

Ry = 57/0 or(y(7),y' (7)) sin 2nrdr. (4.10)
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We get another two equations when we substitute the values x = 0 and
x =1 into the approximation (4.3)

{ K =co+c1 + A(0) + R(0), (4.11)

o=1%(s+2)+co—c+ A1)+ R(1).
Let us carry out a qualitative analysis. We introduce the function

2

8
229};)(2+h)3, h=1+ 1+§, (4.12)

¥(go) =
which monotonically increases for go > 0. Then

1) for ¥(go) < g} the system has no solution;
2) for ¥(go) = g7 the system has one solution

2
=0 =T (4.13)

pO_aha Ck+p0,

3) for ¥(go) > g% and

2(g0 — az)3h

o =" 2
G <9 (4.14)

O(g0) =
the system has two solutions, but for ©(gg) = g# third solution emerge:

ah . _gla(2+h)'

- = 4.1
4 ) D1 2(90 — CK2) ’ ( 5)

Po = —

4) for ©(go) > g7 the system has four solutions.

When we further increase the value of the parameter gy, we leave the ad-
missible domain of approximation (by n = 1 and m = 3).

Thus, the equations ¥(go) = g7, O(go) = ¢? give the first two surfaces of
bifurcations in the pentadimensional space of parameters w, t, z, s and fy. If
t=z=5= fy =0, then we get from these equations that w = 0 and w = 2.
They are the first two eigenvalues of corresponding linear spectral problem.

We also can obtain an approximate solution for the problem (4.1), if we
apply a proper iterative process. For example, if we don’t take into account
the errors R(z) and R; and suppose that & = y(0) = 0, 0 = y(1) = 0, then
we can obtain the solution of the system (4.9). Next, we iteratively determine
the values of parameters £ and o from the system (4.11) and solve again the
system (4.9). So, we construct the iterative loop. When we determine the
solution y(x), we can obtain apriori the error estimate from the representation
(4.5) .
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5. CONCLUSION

The main idea of the Fourier-asymptotic (F-A) approximation is that starting
with some index n we substitute the Fourier coefficients with their asymptotic
(n = 4+00) approximations.

With the help of F-A approximation we get some generalization of the
classical Galerkin method for the solution of boundary problem for ordinary
differential equations. The main merit of this modification is the possibility
apriori selection of the number n of basic functions, which guarantee the small
error. Moreover, we can have both the apriori and the a posteriori estimates
of the approximation error. We can clarify the domain of applicability for
the F-A approximation. The numerical examples show that the addition
of asymptotic correction allows us to obtain a high accuracy of results for
small n. This allows us to apply the F-A approximation for solving nonlinear
equations. In this case the F-A approximation allows us to carry out an
approximate analysis of a decidability for the nonlinear boundary problem, to
obtain the analytic expressions for the surface of bifurcation and to construct
the approximate solution.

We can obtain the Fourier-asymptotic approximation for different types of
Fourier series, one dimensional or multidimensional. We need only to find the
asymptotic approximations for the corresponding Fourier coefficients. Analo-
gous approximations can be constructed for the integral Fourier transform.
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