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ABSTRACT

The implementation of a modern preconditioned Newton-Krylov solvers to the polymer
melt flow in injection molding is the main focus of this paper. The viscoelastic and
non-isothermal characteristics of the transient polymer flow is simulated numerically and
the highly non-linear problem solved. This non-linear behavior results from the
combination of the dominant convective terms and the dependence of the polymer
viscosity to the changing temperature and the shear rate. The governing non-Newtonian
fluid flow and energy equations with appropriate approximations are discretized by finite
differencing. Elliptic Grid Generation technique is used to map physical domain to
computational domain. The resulting non-linear system is solved by using Newton’s
method. GMRES, one of the Krylov subspace methods, used as an iterative algorithm in
order to solve the linear system at each non-linear step. Incomplete LU preconditioner is
used for better convergence. Numerical solution of polymer flow is presented to
demonstrate that these methods are efficient and robust for solving such flow problems.

1. INTRODUCTION

The focus of current research is to apply the modern numerical methods to the
numerical investigation of the polymer melt flow in injection molding. The

IThe work of the first author was supported in part by Turkish Navy. The work of the
second author was funded by grant from Bogazigi University Research Fund, no: 99A602.



Injection Molding by ILUP GMRES 175

code generated in this numerical study of polymer flow, can be used in the
design work of various mold shapes. The numerical investigation of such flows
is still very challenging due to the temperature and shear rate dependence of
the viscosity and the effect of viscosity on the temperature. These effects
create the coupling between the stream function equation and the energy
equation. The objective of this work is to solve such coupled problem with
finite difference discretization, elliptic grid generation technique, and apply
the Newton’s method to the non-linear problem and at each non-linear step
solve the system by using Incomplete LU preconditioned GMRES.

Injection molding method is used in the production of especially the plastics
but at the same time composites, ceramics, metals, etc. If the flow and the
temperature distribution of the polymer melt in the mold can be modelled
numerically, many problems encountered during the production of the mold
or the prototype can be anticipated. The numerical modelling before the
production eliminates some costs and makes it possible to manufacture more
complicated parts.

The recent work on the numerical modelling of the injection molding prob-
lems can be summarized as follows. Kamal et al. [1] considered the flow field
as a non-isothermal, viscoelastic polymer flow considering the fountain flow
at the melt front. Again Kamal et al. [2] simulated the polymer flow with a
non-isothermal crystallization model. Hieber and Shen [3] have used a finite-
element/finite difference model for arbitrary mold shapes, but their model
neglects the fountain flow and its effects at the melt front.

Subbiah et al. [4] have investigated the mold filling process for a non-
isothermal and non-Newtonian polymer with fountain flow effect just on the
temperature field. They have used a numerical grid generation method for ar-
bitrary shape molds. The numerical solution of the problem has been achieved
by mapping the physical domain to a computational domain. The boundary
fitted coordinate system (BFCS) in the physical domain has been generated
by Elliptic Grid Generation method.

Kietzmann et al. [12] have developed a free-front tracking algorithm to
simulate the filling stage of the injection molding process in a thin gap. They
used the finite volume approach and Hele-Shaw flow equations. Smith et
al. [13] have computed the fill time and filling pattern for non-linear equations
for the polymer melt pressure field which are formed via isothermal Hele-Shaw
flow analysis. They used a moving boundary analysis, which is based on the
volume-of-fluid (VOF) technique.

The objective of this study is to develop efficient Newton-Krylov solvers
for polymer injection flow computations. An approximate system of linear
equations arising from the Newton linearization is solved by a Krylov sub-
space algorithm called Generalized Minimal Residual algorithm. GMRES is
a sparse iterative solver for nonsymmetric matrices. In order to improve the
convergence properties of the solver a preconditioner must be used. Incom-
plete LU preconditioner is used for faster convergence of the iterative solver.
A remarkable feature of Krylov subspace methods is that the storage of the
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Jacobian matrix can be completely eliminated by approximating the Jacobian
with numerical fluxes, resulting in a matrix-free method.

The flow during the injection molding is assumed to be incompressible,
viscous, time dependent. The coupling between the momentum and energy
equations occurs through viscosity term in both equations.

2. MATHEMATICAL MODELLING

In many applications of the injection molding, the item can be thin enough
to consider the flow problem in two dimensions. The pressure and the stream
function fields can be modeled in two dimensions by using Hele-Shaw approx-
imation [7] for thin walled molds. After the Hele-Shaw approximation, the
changes in the z direction can be eliminated by averaging the velocities along
the z direction. ”-” indicates the averaged values over the z direction.

h
u(z,y) = %/0 u(z,y,z)dz, (2.1)

h
o(z,y) = %/0 v(z,y,z)dz. (2.2)

Injection molding problem requires the solution of the continuity, the mo-
mentum and the energy equations. Since the Reynolds number is very small
due to the high viscosity of the polymer melt and the slow moving fluid, the
inertia terms in the momentum equations can be neglected. The governing
equations become;

Continuity equation:

Ju 0v
_ _— = . 2-
5zt 3y =" (2.3)
X-Momentum equation:
0  OJu oP
Y-Momentum equation:
0 Ov oP
— (=) ——=—=0 2.5
0z “az) Oy (25)

Define S(x,y) as the measure of the fluidity,

ho 2
S(:E,y):/o ﬁdz. (2.6)
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Combine the continuity and momentum equations,

o, . 0P. 8, 0P
9255 9,55, =0 (2.7)

The same can be done for the stream function as well.

0,10V 0 ,10v

%(§£)+a—y(§a—y)=0= (2.8)
where
_ ov _ ov

The solution of the three dimensional energy equation with viscous energy
dissipation yields the temperature distribution in the mold. The conduction
has to be considered in all three dimensions, but the convective terms are
dropped in the direction where the thickness of the mold is very small. The
flow front boundary conditions must be stated carefully due to the unknown
location and the temperature of the melt front.

Energy equation:

oT oT oT o*T  9°T O*T 9
— tii— 40— ) =k(=—+ =— + — \al 2.1
PO Gy T 5t 0y) T H e T g T ) T (2.10)
The shear rate in squared form is given as follows:
. ou .. Ov .
= (=) + ()7 2.11
i = (507 + () (211)

The viscosity is highly dependent on the temperature and the shear rate.
The velocities from the solution of the flow field are involved in the solution
of the energy equation. With these contributions, the solution of the coupled
equations requires non-linear solution methods.

2.1. Boundary Conditions

The boundary conditions for Hele-Shaw flow are given as follows:

ou Ov
Uhoep =40} =05 {=—}.20={=—}:20=0. 2.12
{ }z h {}z h {&z}z 0 {az}z 0 ( )
The walls are kept at a certain temperature and the inlet temperature has
to be stated as well. The symmetry condition for the temperature causes the
change in the temperature at the midpoint of the gaplength to be zero.
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oT
{6—}220 =0; T =Tinet at the inlet; T = Tyau at the walls.
z
(2.13)

The temperature of the all free surface nodes are taken equal to the tem-
perature of the central node just behind the free surface. With this method
Subbiah et al. [4] introduced the fountain flow effect to the solution.

2.2. Boundary Conditions for the Stream Function and Pressure

The pressure is kept constant at the inlet and set equal to zero at the flow
front. On the other hand the difference of the stream function between the
mold walls is set equal to the flow rate of the melt at the inlet. The Hele-Shaw
approximation states the velocities at the top and the bottom walls to be zero
while, stream function formulation causes slip condition at the side walls.

oP

— =0, 2.14
on mold walls ’ ( )

F)z'nlet7 free surface — constant;

ov

on inlet, free surface

= 0. (2.15)

Wnold walls = constant;

2.3. Viscosity Modelling

The non-Newtonian characteristics of the polymer melt has to be considered.
The viscosity have to be investigated in three dimensions. The viscosity is
highly dependent on the temperature and the shear rate. There are differ-
ent models to predict the viscosity of the polymers. In this study Carreau
model [8] implemented. The temperature dependence is introduced by an
Arrhenius type of term [6].

A (T —Ty)

P (2.16)

1t = { oo + (Ho — poo) (1 + X292 "F eap{—

3. COMPUTATIONAL MODELLING

3.1. Numerical Methods

Computational Fluid Dynamics (CFD), with its increasing importance, is
an area, where the solution methods for engineering problems are developed
with the use of computers. In the recent decades, there have been numerous
developments in CFD methods as well as in the computers. The main purpose
of this study is to utilize the modern methods in CFD, to solve the non-linear
governing equations arising from the injection molding problem.
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The use of robust algorithms with Newton’s method to solve various prob-
lems of interest is growing in popularity mainly due to the rapid progress
in computer speed and available memory and advances in iterative solution
methods. Newton’s method is a robust technique which converges rapidly
for non-linear problems if the initial guess is close to the solution. In injec-
tion molding problem, the discretization of flow field (stream function, pres-
sure) and energy equations, results in coupled non-linear systems of equations,
which can be solved by Newton’s method.

At each Newton step, a linear problem is solved to determine the Newton
update, dz. The linear systems at each Newton step results in

Jox = —F(x), (3.1)

where J is the Jacobian matrix and F is the vector of discrete governing
equations (right hand side vector). Krylov subspace methods try to find
approximations to dzx.

At each non-linear step of Newton’s method, an iterative solver is used to
solve the linear system. Krylov subspace methods are fast iterative methods
to solve a system of linear equations. The use of Krylov subspace methods
in conjunction with the Newton’s method, are simply called Newton-Krylov
methods.

A striking advantage of iterative methods like Krylov subspace methods
is the reduced memory requirements (compared to the factorization based
methods, like Gaussian elimination). On the other hand, it is possible to start
iterations with a relaxed tolerance and decrease the magnitude of the tolerance
with increasing iteration number, while the convergence takes place. [10]

One such Krylov technique is the Generalized Minimal Residual (GMRES).
In this study, at each step of Newton’s method, the system of linear equations
is solved by GMRES. GMRES does not require the Jacobian to be symmet-
ric and/or positive definite. GMRES minimizes the norm of the computed
residual vector at every step over a Krylov subspace, which contains a cer-
tain number of orthogonal search directions. The algorithm is derived from
the Arnoldi process for constructing an Is-orthogonal basis of Krylov sub-
spaces. [5]

Using GMRES, the norm of the residual is non-increasing, and the norm
can be monitored without constructing intermediate iterates. The eigenvalues
are approximately given at no extra cost, for spectral analysis, that enables
convergence studies.

The cost of allowing the Jacobian to be non-symmetric in Krylov meth-
ods is that the current iterate depends on all previous iterates that causes
operation count and storage requirements to grow quadratically and linearly,
respectively, in the iteration index. To overcome this problem one can restart
the algorithm periodically or restrict the orthogonalization process to a mov-
ing window of the most recent iterates. Both of these variences with bounded
recurrence relation suffer the loss of finite termination property. Instead of
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restarting the algorithm, convergence can be improved by preconditioning
techniques.

In Krylov algorithms, the Jacobian is required only in the form of matrix-
vector products, referred as the 'matrix-free’ implementation. The product
can be approximated by finite differences. The storage of the Jacobian matrix
can be eliminated by matrix free implementation. However, the Jacobian is
needed periodically during the outer Newton iteration to generate an effective
preconditioner for the inner Krylov iteration.

F(x+ew) — F(IE)

Jw =~

(3.2)

The condition number of the system matrix plays a major role in the con-
vergence rate of the iterative solver. The iterative solvers perform better with
the linear systems, for which the eigenvalues of the system matrix are clus-
tered. The method, called the preconditioning, attempts to change the linear
system to another one, which has the same solution, but with eigenvalues clus-
tered at a single value. Preconditioning, (2.1) accelerates the convergence of
the linear system, which means, the decrease in computation time and effort;
(2.2) decreases the number of time steps to reach a steady state solution. [11]

Left preconditioning involves premultiplying the linear system Az = b; with
a matrix as P~' Az = P~1'b where P is preconditioning matrix. The best pre-
conditioning matrix for A would cluster as many eigenvalues as possible at
unity. Obviously, the optimal choice of P is A, in which case the underlying
matrix problem for GMRES is trivially solved with one Krylov vector. Pre-
conditioning will be cost effective only if the additional computational work
incurred for each subiteration is compensated for by a reduction in the total
number of iterations to converge. In this way, the total cost of solving the
overall non-linear system is reduced. [11]

ILU (Incomplete LU) preconditioner is employed for better spectral prop-
erties of the system matrix.

3.2. Numerical Grid Generation

In order to enhance the efficiency and accuracy of the numerical scheme and
to simplify the implementation of boundary conditions, a transformation from
physical space (z,y, z) of the polymer melt in the mold to computational space
(&,m, z) is performed. Boundary Fitted rectangular type grid is generated
by the use of an elliptic grid generation code. The governing equations are
transformed to the computational domain as well. The finite differencing
is employed to discretize the partial differential equations in computational
domain.

In the elliptic grid generation method, a set of differential equations has to
be solved by finite difference technique.

axee — 2PTey + Yy = —I(Pze + Quy), (3.3)
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ayee — 2BYen + Yynn = —1(Pye + Qun), (3.4)

where a = m% + yf,; Y= 332 + yg; B =xywe +ypye; I = veyy — Yery-
The Jacobian is,

S (3.5)

J = ,
LeYn — Yely

1
1

& =1lyy & =—lzy 1. =—Iye ny = Ilug. (3.6)

P and @) are the grid control functions. It is possible to increase the number
of grid points at certain areas of the physical domain by changing P and @. In
this study, P and @ are set equal to zero, which creates a uniform mesh. The
transformation equations and the transformed form of the governing equations
can be seen in Erol’s thesis work [9].

4. RESULTS
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Figure 1. Mold Filling Process.

A computer code has been developed which uses Newton-Krylov methods,
preconditioning and elliptic grid generation methods. As a model problem, the
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Figure 2. a. Stream Lines b. Pressure Contours in Mold Filling Process.

viscous flow of polymer melt in an arbitrary shape mold is investigated. The
inlet temperature and pressure kept constant as well as the wall temperatures.
The code includes the subroutines which solve the coupled non-linear systems
for the stream function, the pressure and the temperature fields. Another
subroutine provides the solution of elliptic grid generation. This coupled,
highly non-linear problem can be solved by iterative sparse matrix solution
methods and the finite difference discretization tools.

The numerical experiments show that Newton-Krylov methods accelerate
the solution of non-linear injection molding problem. In Newton’s method
when the initial guess is a good approximation of the solution, the convergence
is faster. Each time step requires the solution of the non-linear problem with
unknown velocity, temperature, and viscosity distributions. It is possible to
feed the values at the previous step as the initial values to the system at the
current step. This advantage of the method and problem is disappeared, every
time a new line of nodes added to the flow front. At such step, the convergence
requires more iterations, due to the slight changes in initial conditions for
Newton’s method.

The tests conducted for the same problem without a preconditioner and
with ILU preconditioner have proven that an efficient preconditioner is re-
quired for Krylov subspace methods. The numerical experiments, whose re-
sults are shown in Figures 1 and 2, are conducted by use of ILU preconditioner.
When the preconditioner is removed with the same computer and the same
mesh size, it is impossible to get satisfactory results in a reasonable period of
time.

The use of GMRES is proven to be a good choice as an iterative solver. It
is possible to solve large systems by GMRES at each Newton’s step.

The grid size is constant in the y direction and 20, but in the x direction
with the advancing flow front grid size increases up to 120. In Figure 1, the
physical mesh can be seen. Figure 2 shows the stream lines and pressure
contours respectively in (a) and (b).

The model problem has also been tested for simple mold shapes, where
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analytical solutions are possible. It has been observed that the results are in
good agreement.

It has been also observed that the experiments conducted by Erol [9] and
the results of this work are also in good agreement. FErol has taken some
pictures during the experiments and the comparison of these pictures with
the generated computer plots show that the flow front is similar to what has
been expected.

5. CONCLUSIONS

The flow and temperature fields of the melt polymer in injection molding sim-
ulated. Both fields are coupled through the viscosity, temperature, and shear
rate dependence. The injection molding into thin walled cavity is simulated
by using modern CFD techniques and the results are presented.

In the numerical experiments, Newton-Krylov methods are proven to be
extremely effective for numerical solution of non-linear problem of polymer
melt flow. Among other preconditioners, ILU preconditioner is used to im-
prove spectral properties of linear systems at each Newton’s step. It has been
seen that Krylov iterative solver, GMRES, performs better with an efficient
preconditioner.

The code generated can be a tool to analyze the flow of polymer melt in
the thin walled molds.
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POLIMERINIO LYDINIO TEKEJIMO SKAITINE ANALIZE
PANAUDOJANT GMRES METODA SU ILU SALYGOTUMA

GERINANCIA MATRICA
U. TURK, A. ECDER

Siame darbe nagrinéjamas §iuolaikiniy Niutono-Krylovo metody efektyvumas, kai jais spren-
dziame polimerinio lydinio tekéjimo uzdavini. Uzdavinys yra stipriai netiesinis, tai salygo-
ja vyraujanciy konvekciniy nariy saveika ir koeficienty priklausomybé nuo temperatiiros.
Uzdavinys aproksimuojamas baigtiniy skirtumy schema. Panaudojant elipsinj tinklo gene-
ratoriy fiziné skaiCiavimo sritis yra atvaizduojama i skaiC¢iavimo sriti. Gautoji netiesiniy
lygciy sistema sprendziama Niutono metodu. Kiekviename iteraciniame zingsnyje tiesiniy
lygciy sistema sprendziama GMRES metodu, kuris modifikuojamas nepilnos LU faktoriza-
cijos neisreikstiniu operatoriumi. Pateiktieji skaiciavimo eksperimento rezultatai iliustruoja

algoritmy efektyvuma ir universaluma.



