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 1999 TechnikaNUMERICAL INVESTIGATION OF THEPOLYMER MELT FLOW IN INJECTIONMOLDING BY USING ILUPRECONDITIONED GMRESU. T�URK1, A. ECDER2 11Turkish Naval Academy, Technical Sciences DepartmentTuzla, 81704, Istanbul, Turkey2Department of Mechanical Engineering, Bo�gazi�ci UniversityBebek, 80815, Istanbul, TurkeyE-mail: 1otturk@dho.edu.tr, 2ecder@boun.edu.trReceived September 30, 1999ABSTRACTThe implementation of a modern preconditioned Newton-Krylov solvers to the polymermelt 
ow in injection molding is the main focus of this paper. The viscoelastic andnon-isothermal characteristics of the transient polymer 
ow is simulated numerically andthe highly non-linear problem solved. This non-linear behavior results from thecombination of the dominant convective terms and the dependence of the polymerviscosity to the changing temperature and the shear rate. The governing non-Newtonian
uid 
ow and energy equations with appropriate approximations are discretized by �nitedi�erencing. Elliptic Grid Generation technique is used to map physical domain tocomputational domain. The resulting non-linear system is solved by using Newton'smethod. GMRES, one of the Krylov subspace methods, used as an iterative algorithm inorder to solve the linear system at each non-linear step. Incomplete LU preconditioner isused for better convergence. Numerical solution of polymer 
ow is presented todemonstrate that these methods are e�cient and robust for solving such 
ow problems.1. INTRODUCTIONThe focus of current research is to apply the modern numerical methods to thenumerical investigation of the polymer melt 
ow in injection molding. The1The work of the �rst author was supported in part by Turkish Navy. The work of thesecond author was funded by grant from Bo�gazi�ci University Research Fund, no: 99A602.



Injection Molding by ILUP GMRES 175code generated in this numerical study of polymer 
ow, can be used in thedesign work of various mold shapes. The numerical investigation of such 
owsis still very challenging due to the temperature and shear rate dependence ofthe viscosity and the e�ect of viscosity on the temperature. These e�ectscreate the coupling between the stream function equation and the energyequation. The objective of this work is to solve such coupled problem with�nite di�erence discretization, elliptic grid generation technique, and applythe Newton's method to the non-linear problem and at each non-linear stepsolve the system by using Incomplete LU preconditioned GMRES.Injection molding method is used in the production of especially the plasticsbut at the same time composites, ceramics, metals, etc. If the 
ow and thetemperature distribution of the polymer melt in the mold can be modellednumerically, many problems encountered during the production of the moldor the prototype can be anticipated. The numerical modelling before theproduction eliminates some costs and makes it possible to manufacture morecomplicated parts.The recent work on the numerical modelling of the injection molding prob-lems can be summarized as follows. Kamal et al. [1] considered the 
ow �eldas a non-isothermal, viscoelastic polymer 
ow considering the fountain 
owat the melt front. Again Kamal et al. [2] simulated the polymer 
ow with anon-isothermal crystallization model. Hieber and Shen [3] have used a �nite-element/�nite di�erence model for arbitrary mold shapes, but their modelneglects the fountain 
ow and its e�ects at the melt front.Subbiah et al. [4] have investigated the mold �lling process for a non-isothermal and non-Newtonian polymer with fountain 
ow e�ect just on thetemperature �eld. They have used a numerical grid generation method for ar-bitrary shape molds. The numerical solution of the problem has been achievedby mapping the physical domain to a computational domain. The boundary�tted coordinate system (BFCS) in the physical domain has been generatedby Elliptic Grid Generation method.Kietzmann et al. [12] have developed a free-front tracking algorithm tosimulate the �lling stage of the injection molding process in a thin gap. Theyused the �nite volume approach and Hele-Shaw 
ow equations. Smith etal. [13] have computed the �ll time and �lling pattern for non-linear equationsfor the polymer melt pressure �eld which are formed via isothermal Hele-Shaw
ow analysis. They used a moving boundary analysis, which is based on thevolume-of-
uid (VOF) technique.The objective of this study is to develop e�cient Newton-Krylov solversfor polymer injection 
ow computations. An approximate system of linearequations arising from the Newton linearization is solved by a Krylov sub-space algorithm called Generalized Minimal Residual algorithm. GMRES isa sparse iterative solver for nonsymmetric matrices. In order to improve theconvergence properties of the solver a preconditioner must be used. Incom-plete LU preconditioner is used for faster convergence of the iterative solver.A remarkable feature of Krylov subspace methods is that the storage of the



176 U. T�urk, A. EcderJacobian matrix can be completely eliminated by approximating the Jacobianwith numerical 
uxes, resulting in a matrix-free method.The 
ow during the injection molding is assumed to be incompressible,viscous, time dependent. The coupling between the momentum and energyequations occurs through viscosity term in both equations.2. MATHEMATICAL MODELLINGIn many applications of the injection molding, the item can be thin enoughto consider the 
ow problem in two dimensions. The pressure and the streamfunction �elds can be modeled in two dimensions by using Hele-Shaw approx-imation [7] for thin walled molds. After the Hele-Shaw approximation, thechanges in the z direction can be eliminated by averaging the velocities alongthe z direction. "-" indicates the averaged values over the z direction.�u(x; y) = 1h Z h0 u(x; y; z)dz; (2.1)�v(x; y) = 1h Z h0 v(x; y; z)dz: (2.2)Injection molding problem requires the solution of the continuity, the mo-mentum and the energy equations. Since the Reynolds number is very smalldue to the high viscosity of the polymer melt and the slow moving 
uid, theinertia terms in the momentum equations can be neglected. The governingequations become;Continuity equation: @�u@x + @�v@y = 0: (2.3)X-Momentum equation: @@z (�@u@z )� @P@x = 0: (2.4)Y-Momentum equation: @@z (�@v@z )� @P@y = 0: (2.5)De�ne S(x,y) as the measure of the 
uidity,S(x; y) = Z h0 z2� dz: (2.6)



Injection Molding by ILUP GMRES 177Combine the continuity and momentum equations,@@x (S @P@x ) + @@y (S @P@y ) = 0: (2.7)The same can be done for the stream function as well.@@x ( 1S @	@x ) + @@y ( 1S @	@y ) = 0; (2.8)where �u(x; y) = @	@y ; �v(x; y) = �@	@x : (2.9)The solution of the three dimensional energy equation with viscous energydissipation yields the temperature distribution in the mold. The conductionhas to be considered in all three dimensions, but the convective terms aredropped in the direction where the thickness of the mold is very small. The
ow front boundary conditions must be stated carefully due to the unknownlocation and the temperature of the melt front.Energy equation:�Cp(@T@t + �u@T@x + �v @T@y ) = k(@2T@x2 + @2T@y2 + @2T@z2 ) + � _
2: (2.10)The shear rate in squared form is given as follows:_
2 = (@u@z )2 + (@v@z )2: (2.11)The viscosity is highly dependent on the temperature and the shear rate.The velocities from the solution of the 
ow �eld are involved in the solutionof the energy equation. With these contributions, the solution of the coupledequations requires non-linear solution methods.2.1. Boundary ConditionsThe boundary conditions for Hele-Shaw 
ow are given as follows:fugz=h = fvgz=h = 0; f@u@z gz=0 = f@v@z gz=0 = 0: (2.12)The walls are kept at a certain temperature and the inlet temperature hasto be stated as well. The symmetry condition for the temperature causes thechange in the temperature at the midpoint of the gaplength to be zero.



178 U. T�urk, A. Ecderf@T@z gz=0 = 0; T = Tinlet at the inlet; T = Twall at the walls:(2.13)The temperature of the all free surface nodes are taken equal to the tem-perature of the central node just behind the free surface. With this methodSubbiah et al. [4] introduced the fountain 
ow e�ect to the solution.2.2. Boundary Conditions for the Stream Function and PressureThe pressure is kept constant at the inlet and set equal to zero at the 
owfront. On the other hand the di�erence of the stream function between themold walls is set equal to the 
ow rate of the melt at the inlet. The Hele-Shawapproximation states the velocities at the top and the bottom walls to be zerowhile, stream function formulation causes slip condition at the side walls.Pinlet; free surface = constant; @P@n mold walls = 0; (2.14)	mold walls = constant; @	@n inlet; free surface = 0: (2.15)2.3. Viscosity ModellingThe non-Newtonian characteristics of the polymer melt has to be considered.The viscosity have to be investigated in three dimensions. The viscosity ishighly dependent on the temperature and the shear rate. There are di�er-ent models to predict the viscosity of the polymers. In this study Carreaumodel [8] implemented. The temperature dependence is introduced by anArrhenius type of term [6].� = f�1 + (�0 � �1)(1 + �2 _
2)[n�12 ]gexpf�An(T � T0)T0 g: (2.16)3. COMPUTATIONAL MODELLING3.1. Numerical MethodsComputational Fluid Dynamics (CFD), with its increasing importance, isan area, where the solution methods for engineering problems are developedwith the use of computers. In the recent decades, there have been numerousdevelopments in CFD methods as well as in the computers. The main purposeof this study is to utilize the modern methods in CFD, to solve the non-lineargoverning equations arising from the injection molding problem.



Injection Molding by ILUP GMRES 179The use of robust algorithms with Newton's method to solve various prob-lems of interest is growing in popularity mainly due to the rapid progressin computer speed and available memory and advances in iterative solutionmethods. Newton's method is a robust technique which converges rapidlyfor non-linear problems if the initial guess is close to the solution. In injec-tion molding problem, the discretization of 
ow �eld (stream function, pres-sure) and energy equations, results in coupled non-linear systems of equations,which can be solved by Newton's method.At each Newton step, a linear problem is solved to determine the Newtonupdate, �x. The linear systems at each Newton step results inJ�x = �F (x); (3.1)where J is the Jacobian matrix and F is the vector of discrete governingequations (right hand side vector). Krylov subspace methods try to �ndapproximations to �x.At each non-linear step of Newton's method, an iterative solver is used tosolve the linear system. Krylov subspace methods are fast iterative methodsto solve a system of linear equations. The use of Krylov subspace methodsin conjunction with the Newton's method, are simply called Newton-Krylovmethods.A striking advantage of iterative methods like Krylov subspace methodsis the reduced memory requirements (compared to the factorization basedmethods, like Gaussian elimination). On the other hand, it is possible to startiterations with a relaxed tolerance and decrease the magnitude of the tolerancewith increasing iteration number, while the convergence takes place. [10]One such Krylov technique is the Generalized Minimal Residual (GMRES).In this study, at each step of Newton's method, the system of linear equationsis solved by GMRES. GMRES does not require the Jacobian to be symmet-ric and/or positive de�nite. GMRES minimizes the norm of the computedresidual vector at every step over a Krylov subspace, which contains a cer-tain number of orthogonal search directions. The algorithm is derived fromthe Arnoldi process for constructing an I2-orthogonal basis of Krylov sub-spaces. [5]Using GMRES, the norm of the residual is non-increasing, and the normcan be monitored without constructing intermediate iterates. The eigenvaluesare approximately given at no extra cost, for spectral analysis, that enablesconvergence studies.The cost of allowing the Jacobian to be non-symmetric in Krylov meth-ods is that the current iterate depends on all previous iterates that causesoperation count and storage requirements to grow quadratically and linearly,respectively, in the iteration index. To overcome this problem one can restartthe algorithm periodically or restrict the orthogonalization process to a mov-ing window of the most recent iterates. Both of these variences with boundedrecurrence relation su�er the loss of �nite termination property. Instead of



180 U. T�urk, A. Ecderrestarting the algorithm, convergence can be improved by preconditioningtechniques.In Krylov algorithms, the Jacobian is required only in the form of matrix-vector products, referred as the 'matrix-free' implementation. The productcan be approximated by �nite di�erences. The storage of the Jacobian matrixcan be eliminated by matrix free implementation. However, the Jacobian isneeded periodically during the outer Newton iteration to generate an e�ectivepreconditioner for the inner Krylov iteration.Jw � F (x+ "w) � F (x)" : (3.2)The condition number of the system matrix plays a major role in the con-vergence rate of the iterative solver. The iterative solvers perform better withthe linear systems, for which the eigenvalues of the system matrix are clus-tered. The method, called the preconditioning, attempts to change the linearsystem to another one, which has the same solution, but with eigenvalues clus-tered at a single value. Preconditioning, (2.1) accelerates the convergence ofthe linear system, which means, the decrease in computation time and e�ort;(2.2) decreases the number of time steps to reach a steady state solution. [11]Left preconditioning involves premultiplying the linear system Ax = b; witha matrix as P�1Ax = P�1b where P is preconditioning matrix. The best pre-conditioning matrix for A would cluster as many eigenvalues as possible atunity. Obviously, the optimal choice of P is A; in which case the underlyingmatrix problem for GMRES is trivially solved with one Krylov vector. Pre-conditioning will be cost e�ective only if the additional computational workincurred for each subiteration is compensated for by a reduction in the totalnumber of iterations to converge. In this way, the total cost of solving theoverall non-linear system is reduced. [11]ILU (Incomplete LU) preconditioner is employed for better spectral prop-erties of the system matrix.3.2. Numerical Grid GenerationIn order to enhance the e�ciency and accuracy of the numerical scheme andto simplify the implementation of boundary conditions, a transformation fromphysical space (x; y; z) of the polymer melt in the mold to computational space(�; �; z) is performed. Boundary Fitted rectangular type grid is generatedby the use of an elliptic grid generation code. The governing equations aretransformed to the computational domain as well. The �nite di�erencingis employed to discretize the partial di�erential equations in computationaldomain.In the elliptic grid generation method, a set of di�erential equations has tobe solved by �nite di�erence technique.�x�� � 2�x�� + 
x�� = �I(Px� +Qx�); (3.3)



Injection Molding by ILUP GMRES 181�y�� � 2�y�� + 
y�� = �I(Py� +Qy�); (3.4)where � = x2� + y2�; 
 = x2� + y2� ; � = x�x� + y�y�; I = x�y� � y�x� .The Jacobian is, J = 1I = 1x�y� � y�x� ; (3.5)�x = Iy� �y = �Ix� �x = �Iy� �y = Ix�: (3.6)P and Q are the grid control functions. It is possible to increase the numberof grid points at certain areas of the physical domain by changing P and Q: Inthis study, P and Q are set equal to zero, which creates a uniform mesh. Thetransformation equations and the transformed form of the governing equationscan be seen in Erol's thesis work [9].4. RESULTS
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Figure 1. Mold Filling Process.A computer code has been developed which uses Newton-Krylov methods,preconditioning and elliptic grid generation methods. As a model problem, the
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b)Figure 2. a. Stream Lines b. Pressure Contours in Mold Filling Process.viscous 
ow of polymer melt in an arbitrary shape mold is investigated. Theinlet temperature and pressure kept constant as well as the wall temperatures.The code includes the subroutines which solve the coupled non-linear systemsfor the stream function, the pressure and the temperature �elds. Anothersubroutine provides the solution of elliptic grid generation. This coupled,highly non-linear problem can be solved by iterative sparse matrix solutionmethods and the �nite di�erence discretization tools.The numerical experiments show that Newton-Krylov methods acceleratethe solution of non-linear injection molding problem. In Newton's methodwhen the initial guess is a good approximation of the solution, the convergenceis faster. Each time step requires the solution of the non-linear problem withunknown velocity, temperature, and viscosity distributions. It is possible tofeed the values at the previous step as the initial values to the system at thecurrent step. This advantage of the method and problem is disappeared, everytime a new line of nodes added to the 
ow front. At such step, the convergencerequires more iterations, due to the slight changes in initial conditions forNewton's method.The tests conducted for the same problem without a preconditioner andwith ILU preconditioner have proven that an e�cient preconditioner is re-quired for Krylov subspace methods. The numerical experiments, whose re-sults are shown in Figures 1 and 2, are conducted by use of ILU preconditioner.When the preconditioner is removed with the same computer and the samemesh size, it is impossible to get satisfactory results in a reasonable period oftime.The use of GMRES is proven to be a good choice as an iterative solver. Itis possible to solve large systems by GMRES at each Newton's step.The grid size is constant in the y direction and 20, but in the x directionwith the advancing 
ow front grid size increases up to 120. In Figure 1, thephysical mesh can be seen. Figure 2 shows the stream lines and pressurecontours respectively in (a) and (b).The model problem has also been tested for simple mold shapes, where



Injection Molding by ILUP GMRES 183analytical solutions are possible. It has been observed that the results are ingood agreement.It has been also observed that the experiments conducted by Erol [9] andthe results of this work are also in good agreement. Erol has taken somepictures during the experiments and the comparison of these pictures withthe generated computer plots show that the 
ow front is similar to what hasbeen expected.5. CONCLUSIONSThe 
ow and temperature �elds of the melt polymer in injection molding sim-ulated. Both �elds are coupled through the viscosity, temperature, and shearrate dependence. The injection molding into thin walled cavity is simulatedby using modern CFD techniques and the results are presented.In the numerical experiments, Newton-Krylov methods are proven to beextremely e�ective for numerical solution of non-linear problem of polymermelt 
ow. Among other preconditioners, ILU preconditioner is used to im-prove spectral properties of linear systems at each Newton's step. It has beenseen that Krylov iterative solver, GMRES, performs better with an e�cientpreconditioner.The code generated can be a tool to analyze the 
ow of polymer melt inthe thin walled molds.REFERENCES[1] M. R. Kamal, E. Chu, P. G. La
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184 U. T�urk, A. Ecder[11] H. Luo, J.D. Baum, and R.Lohner. A Fast Matrix-free Implicit Method for Compress-ible Flows on Unstructured Grids. Journal of Computational Physics, 146, 1998, 664{ 690.[12] C.V.L. Kietzmann, J. P. Van der Walt and Y. S. Morsi. A Free-Front Tracking Algo-rithm for A Control-Volume-Based Hele-Shaw Method. Int. J. for Num. Methods inEngineering, 41 (2), 1998, 253 { 269.[13] D.E. Smith, D. A. Tortorelli and C. L. Tucker III. Analysis and Sensitivity Analysis forPolymer Injection and Compression Molding. Comput. Methods Appl. Mech. Engrg.,167 (3-4), 1998, 325 { 344.POLIMERINIO LYDINIO TEK _EJIMO SKAITIN _E ANALIZ _EPANAUDOJANT GMRES METODAc SU ILU SAcLYGOTUMAcGERINAN�CIA MATRICAU. TURK, A. ECDER�Siame darbe nagrin_ejamas�siuolaikiniuc Niutono-Krylovo metoduc efektyvumas, kai jais spren-d�ziame polimerinio lydinio tek_ejimo u�zdavinic. U�zdavinys yra stipriai netiesinis, tai saclygo-ja vyraujan�ciuc konvekciniuc nariuc sacveika ir koe�cientuc priklausomyb_e nuo temperat�uros.U�zdavinys aproksimuojamas baigtiniuc skirtumuc schema. Panaudojant elipsinic tinklo gene-ratoriuc �zin_e skai�ciavimo sritis yra atvaizduojama ic skai�ciavimo sritic. Gautoji netiesiniuclyg�ciuc sistema sprend�ziama Niutono metodu. Kiekviename iteraciniame �zingsnyje tiesiniuclyg�ciuc sistema sprend�ziama GMRES metodu, kuris modi�kuojamas nepilnos LU faktoriza-cijos nei�sreik�stiniu operatoriumi. Pateiktieji skai�ciavimo eksperimento rezultatai iliustruojaalgoritmuc efektyvumac ir universalumac.


