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 1999 TechnikaTHE ROOT CONDITION FOR THE THIRDORDER POLYNOMIALSA. �STIKONASVilnius Gediminas Technical University, Vytautas Magnus University,Institute of Mathematics and InformaticsAkademijos 4, 2600, Vilnius, LithuaniaE-mail: stikonas@fm.vtu.ltReceived October 1, 1999ABSTRACTThis paper deals with a root condition for polynomial of the second and third order. Weprove the root criterion for such polynomial with complex coe�cients and �nd regions forthe root condition in the special coe�cients' phase space.A stability concept for discrete problems is of the most importance in thenumerical analysis. Since the stability and consistency imply convergence.The von Neumann stability de�nition is used for problems with constant co-e�cients. It requires that all eigenvalues of the characteristic equation (or theampli�cation matrix) be in the closed unit disc and the ones on the unit circlebe simple [11]. For �nite-di�erence schemes we can get necessary stability con-ditions from a spectral (von Neumann) stability analysis [1]. In particular,von Neumann's condition is necessary for stability in L2. Often these nec-essary conditions are su�cient conditions for linear �nite-di�erence schemestoo. The de�nition of spectral stability appears when we investigate stabilityof numerical integration methods (Runge-Kutta, multistep methods) for ordi-nary di�erential equations [1; 4; 6; 5; 13] and partial di�erential equations [1;12].1. ROOT CONDITIONConsider a complex polynomialf(z) = Pn(z) = anzn + an�1zn�1 + � � �+ a1z + a0; (1.1)



164 A. �Stikonaswith coe�cients ai 2 C ; where C { is a set of complex numbers. If an 6= 0then such polynomial has n roots qi 2 C ; i = 1; : : : ; n; exactly.Now we formulate the root condition for polynomial (1.1) (see Fig. 1) [1;13]:
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Figure 1. Root condition.
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Figure 2. Criterion for lin-ear polynomial(b 6= 0).
� = 0 0 < � < �2 , �2 < � < � � = �2Figure 3. Criterion for C = c and B = be�i with b; c 2 R; 0 6 � < �.Definition 1.1. Polynomial Pn satis�es the root condition if all roots of thispolynomial are in the closed unit disc of complex plane and those roots ofmagnitude 1 are simple.Usually we use two-level or three-level �nite-di�erence schemes for non-stationary partial di�erential equations. In this case we get linear polynomialP1(z) = bz+c or the second order polynomial P2(z) = az2+bz+c. There areno problems with the linear equation because it has only one root q (if b 6= 0).We must check the magnitude of this root. If it is less or equal than 1 thenpolynomial satis�es the root condition. Thus, in this case we have equalityA � �(c; b) 2 C 2 ; jqj 6 1	 = �jcj 6 jbj; b 6= 0	: (1.2)and an obvious criterion for the linear polynomial. Therefore, to check the



Root condition 165root condition for this polynomial, we simply check whether both coe�cientsb and c belong to the root condition set A (see Fig. 2 with axes jcj and jbj inthe general case and axes c and b in the real polynomial case). If b = 0 andc 6= 0 then there are no roots. If b = 0 and c = 0 then all q 2 C are roots oflinear equation, i.e. linear polynomial does not satisfy the root condition.In general case we have no such a simple criterion for polynomial (1.1). Letus denote by p (p 6 n) the number of zeros of the polynomial f(z) which arein the unit circle jzj = 1: One of the ways to determine p is to map the interiorjzj < 1 of the unit circle into the left half of the complex plane Re z < 0: Thenthe number of zeros may be found by using Hurwitz's criterion for a newpolynomial F (z) = zn +A1zn�1 + : : :+ An in this domain [7; 8].If we consider only the polynomials of the second order z2 + Bz + C = 0;A = 1, B = b 2 R; C = c 2 R) then the well-known Hurwitz's criterion holds:all (two) roots of real polynomial of the second order are in the unit disk ifit's coe�cients satisfy the two simple inequalitiesjcj 6 1; jbj 6 c+ 1: (1.3)The set of the points (c; b) satisfying Hurwitz's criterion make a triangle (seeFig. 3, � = 0). We notice that the double root is on the unit circle, whenc = 1 and D = b2 � 4c = 0; i.e. jbj = 2:2. MAIN RESULTS FOR ROOTS IN THE UNIT CIRCLELet us associate with f(z) = anzn + : : :+ a1z + a0 the conjugate polynomial(by circle S = fz 2 C : jzj = 1g)f�(z) = zn �f(1=z) = �a0zn + �a1zn�1 + � � �+ �an = �a0 nYj=1(z � z�j );whose zeros z�k = 1=�zk are, relative to circle jzj = 1; the inverses of the zeroszk of f(z):Now we shall follow Morris Marden's "Geometry of Polynomials" [10]. Forf(z) and f�(z) we construct the sequence of polynomials fj(z) =Pn�jk=0 a(j)k zk;where f0(z) = f(z) andfj+1(z) = �a(j)0 fj(z)� a(j)n�jf�j (z); j = 0; 1; : : : ; n� 1:Thus, a(j+1)k = �a(j)0 a(j)k � a(j)n�j�a(j)n�j�k:The constant term a(j)0 in each polynomial fj(z) is a real number which wedenote by �j :�j+1 = ja(j)0 j2 � ja(j)n�j j2 = a(j+1)0 ; j = 0; 1; 2; : : : ; n� 1:



166 A. �StikonasAs to the zeros of these polynomials, Cohn [2] has proved lemma which wepresent in the compact form due to Marden [9](in the case when f(z) has nozeros on the circle S). We formulate this lemma in general case.Lemma 2.1. If fj has pj zeros interior to the unit circle S : jzj = 1; sj zeroson the S and if �j+1 6= 0; then fj+1 haspj+1 = (1=2)�n� j � sj � �n� j � sj � 2pj�sign �j+1�zeros interior to S: Furthermore, fj+1 has the same zeros on S as fj :Remark 2.1. If �j+1 > 0 then fj+1 has in circle S the same pj of zeros asfj ; if �j+1 < 0 then fj+1 has in S the same n� j � sj � pj of zeros as f�j ;Schur [14; 15] has proved lemma about polynomials in the case ja0j < janj:Lemma 2.2. If ja0j < janj then polynomial f(z) has its all zeros in the unitcircle S if and only if f�1 (z) has its zeros in the unit circle.Let construct sequence: Pk = �1�2 : : : �k; k = 1; 2; : : : ; n: Marden[10] hasproved theorem:Theorem 2.1. For a given polynomial f(z) = a0 + a1z + � � � + anzn; letthe sequence fj+1(z) be constructed. Then, if for some k < n; Pk 6= 0 inPk = �1�2 : : : �k; k = 1; 2; : : : ; n; but fk+1(z) � 0; then f has n � k zeroson or symmetric in the circle S : jzj = 1 at the zeros of fk(z): If p of thePj ; j = 1; 2; : : : ; k; are negative, then f has p additional zeros inside S andq = k � p additional zeros outside S:Definition 2.1. Polynomial g(z) = b0 + b1z + � � �+ bnzn is self-inversive, ifzeros of g on S or symmetric in S:If f (and f�) is self-inversive then [10] f = uf; juj = 1 and coe�cients of fsatisfy the relations:bn = u�b0; bn�1 = u�b1; : : : b0 = u�bn; juj = 1:In this case jb0j = jbnj; and if jb0j 6= jbnj then polynomial is not self-inversive.For such polynomial Marden [10] has proved:Lemma 2.3. If g is a self-inversive polynomial, its derivative g0 has no zeroson the circle S : jzj = 1 except at the multiple zeros of g.



Root condition 167Theorem 2.2. If g(z) is a self-inversive polynomial then g has as many zerosin the circle S as the polynomialg1(z) = [g0(z)]� = m�1Xj=0 (m� j)�bm�jzjhas. That is, g and g0 have the same number of zeros for jzj > 1:3. THE ROOT CONDITION FOR COMPLEX POLYNOMIAL OFTHE SECOND ORDERLet the roots of the second order equationf(z) = Az2 +Bz + C = 0 (3.1)be q1 and q2: We denote the set of coe�cients of this polynomial eC 3 =�(A;B;C) 2 C 3 ; A 6= 0	 and separate some subsets of this set in the fol-lowing way:A0 = �(A;B;C) 2 eC 3 ; jq1j < 1; jq2j < 1	;A1 = �(A;B;C) 2 eC 3 ; jq1j < 1; jq2j = 1	;A11 = �(A;B;C) 2 eC 3 ; jq1j = jq2j = 1; q1 6= q2	;A2 = �(A;B;C) 2 eC 3 ; jq1j = jq2j = 1; q1 = q2	:The root condition holds if the coe�cients of the polynomial belong to oneof the sets: A0; A1 and A11: Then a set AR = A0 [ A1 [ A11 is the rootcondition set. The analysis of these sets using theorems for zeros in the unitcircle implies[16] lemma for second order polynomials.Lemma 3.1. The following equalities are valid:A0 = �jCj2 + j �BA� �CBj < jAj2	;A1 = �jCj2 + j �BA� �CBj = jAj2; jCj < jAj	;A11 = �jCj = jAj; �BA = �CB; jBj < 2jAj	;A2 = �jCj = jAj; �BA = �CB; jBj = 2jAj	:This result about root condition we formulate as the following theorem.Theorem 3.1 [The root condition]. The roots of the second order polyno-mial are in the closed unit disc of complex plane and those roots of magnitude1 are simple if AR = �jCj2 + j �BA� �CBj 6 jAj2; jBj < 2jAj	: (3.2)



168 A. �StikonasIf a = A then the root condition reduces toAR = �jCj2 + j �B � �CBj 6 1; jBj < 2	: (3.3)If A = 1; B = b = �b 2 R; C = c = �c 2 R then equality (3.3) corresponds toroot condition (1.3) in Hurwitz's criterion.Now we consider (3.1) when A = 1 in the formw2 +Bw + C = 0 (3.4)with B = be�i; C = ce�i; �; 
 2 [0; 2�); b; c 2 R: Such form of the complexnumber Z = ze'i; z 2 R; ' 2 [0; �) with negative z is equivalent to standardexponential form of complex number Z = jZje('+�)i: Thus, every complexnumber Z = jZje'i; ' 2 [0; 2�) we may write in such form. The root conditionset AR for various � and 
 are sophisticated (the case 
 = 0 see Fig. 3).4. THE ROOT CONDITION FOR COMPLEX POLYNOMIAL OFTHE THIRD ORDERLet the zeros of the third order polynomialf(z) = c+ bz + az2 + dz3; a; b; c; d 2 C ; d 6= 0: (4.1)be q1; q2 and q3: We denote the set of coe�cients k = (a; b; c; d) of thispolynomial eC 4 = �k 2 C 4 ; d 6= 0	 and separate some eC 4 subsets:A0 = �jq1j < 1; jq2j < 1; jq3j < 1	;AD = �jq1j 6 1; jq2j 6 1; jq3j 6 1	;A1 = �jq1j < 1; jq2j < 1; jq3j = 1	;A11 = �jq1j < 1; q2 6= q3; jq2j = jq3j = 1	;A2 = �jq1j < 1; q2 = q3 = q; jqj = 1	;A111 = � q1 6= q2; q2 6= q3; q1 6= q3; jq1j = jq2j = jq3j = 1	;A21 = � q1 6= q2 = q3 = q; jq1j = jqj = 1	;A3 = � q1 = q2 = q3 = q; jqj = 1	:Let be denotef� = �d+ �az +�bz2 + �cz3;A = jcj2 � jdj2 2 R; B = c�b� a �d; C = c�a� b �d;f1 = A+ �Bz + �Cz2; f�1 = C +Bz +Az2;f2 = jAj2 � jCj2 + (A �B �B �C)z; f�2 = AB � �BC + (jAj2 � jCj2)z;f3 = (jAj2 � jCj2)2 � jA �B �B �Cj2:



Root condition 169Polynomial is self-inversive if A = 0; B = 0; C = 0: So the set AD = A0 [A1 [A11 [A111 [A2 [A21 [A3 is the condition that all zeros are in the unitdisc.
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’Figure 4. Self-inversive case.
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*Figure 5. Non self-inversive case.Lemma 4.1. Consider (4.1) polynomial and subsets of eC 4 :~A0 = �A < 0; jCj2 + jA �B �B �C j < jAj2	;~AD = �A < 0; jCj2 + jA �B �B �C j 6 jAj2	[�A = 0; B = 0; jbj2 + 2jb�a� 3a �dj 6 9jdj2	;~A1 = �A < 0; jCj < jAj; jCj2 + jA �B �B �Cj = jAj2	;~A11 = �A < 0; jCj = jAj; A �B = B �C; jBj < 2jAj	;~A2 = �A < 0; jCj = jAj; A �B = B �C; jBj = 2jAj	;~A111 = �A = 0; B = 0; jbj2 + 2jb�a� 3a �dj < 9jdj2	;



170 A. �Stikonas
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Figure 6. Root condition.~A21 = �A = 0; B = 0; jbj < 3jdj; jbj2 + 2jb�a� 3a �dj = 9jdj2	;~A3 = �A = 0; B = 0; b�a = 3a �d	:Then Ai = ~Ai:Proof. We prove those equalities in the case d = 1; because the general case(d 6= 0) we get from lemma if a; b; c replace with a=d; b=d; c=d:From Viete theorem jcj = jq1j � jq2j � jq3j 6 1 and jcj = 1 when jq1j = jq2j =jq3j = 1:If k 2 A0 then jcj < 1: If k 2 ~A0 then jAj > 0; i.e. jcj < 1 too. So, fromlemma 2.2, f�1 de�nition and lema 3.1 (the case A0) follows equality A0 = ~A0:Now consider polynomialF"(z) = f�(1 + ")z� = (1 + ")3z3 + (1 + ")2az2 + (1 + ")bz + c; " > 0;which all zeros are in the circle S if and only if polynomial f zeros are in thecircle S"+1 = fz : jzj < 1 + "g: For such polynomial:A" = jc"j2 � jd"j2 = jcj2 � (1 + ")6 ! A; "! 0;B" = c"�b" � a" �d" = (1 + ")c�b� (1 + ")5a! B; "! 0;C" = c"�a" � b" �d" = (1 + ")2c�a� (1 + ")4b! C; "! 0:If jcj < 1 then jAj > 0 and from conditionjC"j2 + jA" �B" �B" �C"j < jA"j2 (4.2)we get jCj2 + jA �B �B �Cj 6 jAj2: (4.3)



Root condition 171Coe�cients of the polynomials and its zeros are continuously depending fromeach other. So, we �nd the set AD \ fjcj < 1g:For jcj = 1 we haveA" = 1� (1 + ")6 = �6"�1 + o(1)�! 0; "! 0;C" = (1 + ")2�c�a� b� b"(2 + ")�! c�a� b; "! 0:If c�a 6= b then for small " > 0fjC"j2 + jA" �B" �B" �C"j < jA"j2g = ?:In the case jcj = 1; b = c�a we haveB" = a(1 + ")(1� (1 + ")4) = �4a"�1 + o(1)�; "! 0;C" = �2"b�1 + o(1)�; "! 0;and A = 0; B = 0; C = 0; i.d. we have self-inversive polynomial. From (4.2)inequality follows4"2jaj2�1 + o(1)�2 + 8"2�1 + o(1)�2j3a� b�aj < 36"2�1 + o(1)�2; "! 0;or jaj2�1 + o(1)�2 + 2�1 + o(1)�2j3a� b�aj < 9�1 + o(1)�2; "! 0:Finally, we get("! 0):�jaj2 + 2j3a� b�aj 6 9	 = AD \ fjcj = 1g;i.e. AD = ~AD = ~A0 [ ~A1 [ ~A2 [ ~A3 [ ~A11 [ ~A21 [ ~A111:If A = 0; B = 0 then C = 0: So, ~AD r ~A0 = AD rA0 = AS [ ANS ; whereAS = fA = 0; B = 0; jbj2 + 2jb�a� 3a �dj 6 9jdj2g;ANS = fA < 0; jCj2 + jA �B �B �Cj = jAj2gand AS = A111 [ A21 [ A3; ANS = A1 [ A11 [A2:Let consider self-inversive case. From lemma 2.3 and theorem 2.2 f 0 has allzeros in circle S (see Fig. 4). So, we investigate polynomial f 0 = 3z2+2az+ band from lemma 3.1 get ~A111 � A111; ~A21 � A21; ~A3 � A3:Let consider non self-inversive case. If 0 < jcj < 1 From lemma 2.1 f�1 has allzeros in circle S (see Fig. 5). So, we investigate polynomial f�1 = Az2+Bz+Cand from lemma 3.1 get ~A1 \ f0 < jcj < 1g � A1; ~A11 \ f0 < jcj < 1g � A11;~A2 \ f0 < jcj < 1g � A2:



172 A. �StikonasIf c = 0 then f(z) = z(z2 + az + b) and one zero is q1 = 0: We investigatezeros of polynomial F = z2 + az + b and get~A1 \ fc = 0g = �c = 0; jbj < 1; jbj2 + j�a� �baj = 1	 � A1;~A21 \ fc = 0g = �c = 0; jbj = 1; �a = �baj; jaj < 2	 � A21;~A2 \ fc = 0g = �c = 0; jbj = 1; �a = �baj; jaj = 2	 � A2:So, ~A1 � A1; ~A11 � A11; ~A2 � A2:Finally, we prove ~Ai � Ai; i.e. ~Ai = Ai: �The root condition set AR = AD r (A3 [A2 [ A21) (see Fig. 6).Theorem 4.1 [The root condition]. Polynomial f of the third order issatisfying root condition ifAR = ��A < 0; jCj2 + jA �B �B �C j 6 jAj2	r�A < 0; jCj = jAj; A �B = B �C; jBj = 2jAj	�[�A = 0; B = 0; jbj2 + 2jb�a� 3a �dj < 9jdj2	:REFERENCES[1] N.S. Bachvalov, N.P. Zhidkov and G.M. Kobelkov. Numerical Methods. Nauka, Moscow,1987. (in Russian)[2] A. Cohn. �Uber die Anzahl der Wurzeln einer algebraischen Gleichung in einem reise.Math. Z., 14, 1922, 110{148.[3] F.R. Gantmaxer. Theory of Matrix. Nauka, Moscow, 1988. (in Russian)[4] E. Hairer, S.P. N�rsett and G. Wanner. Solving Ordinary Di�erential Equations I. Non-sti� Problems. Springer Series in Computional Mathematics 8. Springer-Verlag BerlinHeidelberg, 1987.[5] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II. Sti� andDi�erential-Algebraic Problems. Springer Series in Computional Mathematics 14.Springer-Verlag Berlin Heidelberg, 1991.[6] P. Henrici. Applied and computational complex analysis V.1. John Wiley & Sons, NewYork, 1974.[7] A. Hurwitz. Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mitnegativen reellen Theilen besitzt. Math. Ann., 46, 1895, 273-284.[8] A. Hurwitz. Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mitnegativen reellen Theilen besitzt. Math. Werke, 2, 533-545.[9] M. Marden. The number of zeros of a polynomial in a circle. In: Proc. Nat. Acad. Sci.U.S.A., 34, 1948, 15-17.[10] M. Marden. Geometry of polynomials. American Mathematical Society, Providence,Rhode Island, 2nd edition, 1966.[11] R.D. Richtmayer and K.W. Morton. Di�erence methods for initial value problems.Interscience Publishers, New York, 1967.[12] A.A. Samarskii. Theory of Di�erence Schemes. Nauka, Moscow, 1989. (in Russian)



Root condition 173[13] A.A. Samarskii and A.V. Goolin. Numerical Methods. Nauka, Moscow, 1989. (in Rus-sian)[14] I. Schur. �Uber Potenzreihen, die in Innern des Einheitskreises beschr�ankt sind. J. ReineAngew. Math., 147, 1917, 205-232.[15] I. Schur. �Uber Polynome, die nur in Innern des Einheitskreis verschwinden, ibid. J.Reine Angew. Math., 148, 1918, 122-145.[16] A. �Stikonas. The root condition for polynomial of the second order and a spectralstability of �nite-di�erence schemes for Kuramoto-Tsuzuki equations. MathematicalModelling and Analysis, 3, 1998, 214 { 226.�SAKNUc SAcLYGA TRE�CIOS EIL _ES DAUGIANARIUIA. �STIKONASStraipsnyje nagrin_ejama �saknuc saclyga kvadratiniam ir kubiniam daugianariui. Icrodytas�saknuc saclygos kriterijus daugianariams su kompleksiniais koe�cientais ir surastos jac atitin-kan�cios sritys specialioje kompleksinio daugianario koe�cientuc fazin_eje plok�stumoje.


