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ABSTRACT

This paper deals with a root condition for polynomial of the second and third order. We
prove the root criterion for such polynomial with complex coefficients and find regions for
the root condition in the special coefficients’ phase space.

A stability concept for discrete problems is of the most importance in the
numerical analysis. Since the stability and consistency imply convergence.
The von Neumann stability definition is used for problems with constant co-
efficients. It requires that all eigenvalues of the characteristic equation (or the
amplification matrix) be in the closed unit disc and the ones on the unit circle
be simple [11]. For finite-difference schemes we can get necessary stability con-
ditions from a spectral (von Neumann) stability analysis [1]. In particular,
von Neumann’s condition is necessary for stability in Ls. Often these nec-
essary conditions are sufficient conditions for linear finite-difference schemes
too. The definition of spectral stability appears when we investigate stability
of numerical integration methods (Runge-Kutta, multistep methods) for ordi-
nary differential equations [1; 4; 6; 5; 13] and partial differential equations [1;
12].

1. ROOT CONDITION

Consider a complex polynomial

1

f(2) = Pu(z) = an2" + an12"" + -+ a1z + ao, (1.1)
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with coefficients a; € C, where C — is a set of complex numbers. If a, # 0
then such polynomial has n roots ¢; € C,i = 1,...,n, exactly.

Now we formulate the root condition for polynomial (1.1) (see Fig. 1) [1;
13]:
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Figure 1. Root condition. Figure 2. Criterion for lin-
ear polynomial(b # 0).
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Figure 3. Criterion for C = ¢ and B = bef! with b,c € R, 0 < 8 < 7.

DEFINITION 1.1. Polynomial P,, satisfies the root condition if all roots of this
polynomial are in the closed unit disc of complex plane and those roots of
magnitude 1 are simple.

Usually we use two-level or three-level finite-difference schemes for non-
stationary partial differential equations. In this case we get linear polynomial
Py (2) = bz +c or the second order polynomial P(z) = az?+ bz +¢. There are
no problems with the linear equation because it has only one root ¢ (if b # 0).
We must check the magnitude of this root. If it is less or equal than 1 then
polynomial satisfies the root condition. Thus, in this case we have equality

A={(e,b) e C,lgf <1} = {lel < [bl, b 0}. (1.2)

and an obvious criterion for the linear polynomial. Therefore, to check the
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root condition for this polynomial, we simply check whether both coefficients
b and ¢ belong to the root condition set A (see Fig. 2 with axes |c| and |b| in
the general case and axes ¢ and b in the real polynomial case). If b = 0 and
¢ # 0 then there are no roots. If b =0 and ¢ = 0 then all ¢ € C are roots of
linear equation, i.e. linear polynomial does not satisfy the root condition.

In general case we have no such a simple criterion for polynomial (1.1). Let
us denote by p (p < n) the number of zeros of the polynomial f(z) which are
in the unit circle |z| = 1. One of the ways to determine p is to map the interior
|z| < 1 of the unit circle into the left half of the complex plane Re z < 0. Then
the number of zeros may be found by using Hurwitz’s criterion for a new
polynomial F(z) = 2" + A;2" ' + ...+ A, in this domain [7; 8].

If we consider only the polynomials of the second order 22 + Bz + C = 0,
A=1,B=b€eR, C=ceR) then the well-known Hurwitz’s criterion holds:
all (two) roots of real polynomial of the second order are in the unit disk if
it’s coefficients satisfy the two simple inequalities

el <1, [bl<e+1. (1.3)

The set of the points (¢, b) satistying Hurwitz’s criterion make a triangle (see
Fig. 3, 8 = 0). We notice that the double root is on the unit circle, when
c=1land D=0 —4c=0,ie. [b] =2.

2. MAIN RESULTS FOR ROOTS IN THE UNIT CIRCLE

Let us associate with f(z) = an2z™ + ... + a1z + ag the conjugate polynomial
(by circle S = {z € C:|z| =1})

f*(Z) = an(]_/z) = d(]zn_i_dlznfl +---+a, = ap H(z 72;)1
j=1

whose zeros zj = 1/z are, relative to circle |z| = 1, the inverses of the zeros

z of f(2).

Now we shall follow Morris Marden’s ” Geometry of Polynomials” [10]. For
f(z) and f*(z) we construct the sequence of polynomials f;(z) = Z;é agcj)z’“,
where fo(z) = f(z) and

fin(x)=ad fi(z) —a?  fr(2), G=0,1,...n—1

Thus,

agcj+1) _ d(()j)aéj) _ad9 g
The constant term
denote by J; :

in each polynomial f;(z) is a real number which we

Sjer = laf|? = a2 = af™V, j=0,1,2,....n—1,
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As to the zeros of these polynomials, Cohn [2] has proved lemma which we
present in the compact form due to Marden [9](in the case when f(z) has no
zeros on the circle S). We formulate this lemma in general case.

Lemma 2.1. If f; has p; zeros interior to the unit circle S : |z| =1, s; zeros
on the S and if 6;41 # 0, then fj41 has

pi+1 = (1/2) (n —j=—si—(n—j—sj— 2pj)sign6j+1)
zeros interior to S. Furthermore, fj11 has the same zeros on S as f;.

Remark 2.1. If §;41 > 0 then f;41 has in circle S the same p; of zeros as
fj:if 0j41 <O then fj11 has in S the same n — j — s; — p; of zeros as [,

Schur [14; 15] has proved lemma about polynomials in the case |ag| < |ay,]-

Lemma 2.2. If |ag| < |a,| then polynomial f(z) has its all zeros in the unit
circle S if and only if f{(z) has its zeros in the unit circle.

Let construct sequence: Py = 6102...dk, k = 1,2,...,n. Marden[10] has
proved theorem:

Theorem 2.1. For a given polynomial f(z) = ao + a1z + -+ + apz"”, let
the sequence fj11(z) be constructed. Then, if for some k < n,P, # 0 in
P, = 60y...0, kK =1,2,...,n, but fry1(z) = 0, then f has n — k zeros
on or symmetric in the circle S : |z| = 1 at the zeros of fr(z). If p of the
Pj,j =1,2,...,k, are negative, then f has p additional zeros inside S and
q = k — p additional zeros outside S.

DEFINITION 2.1. Polynomial g(z) = by + b1z + - - - + b,2" is self-inversive, if
zeros of g on S or symmetric in S.

If f (and f*) is self-inversive then [10] f = uf, |u| =1 and coefficients of f
satisfy the relations:

bn = U?J(), bn,1 = u1317 .. .bo = ’Uj)n7 \u| =1.

In this case |bg| = |bn|, and if |bg| # |b,| then polynomial is not self-inversive.
For such polynomial Marden [10] has proved:

Lemma 2.3. If g is a self-inversive polynomial, its derivative g’ has no zeros
on the circle S : |z| = 1 except at the multiple zeros of g.
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Theorem 2.2. If g(z) is a self-inversive polynomial then g has as many zeros
in the circle S as the polynomial

m—1

91(z) =g = Y (m = b2’

Jj=0

has. That is, g and g' have the same number of zeros for |z| > 1.

3. THE ROOT CONDITION FOR COMPLEX POLYNOMIAL OF
THE SECOND ORDER

Let the roots of the second order equation
f(z)=A2>+Bz+C =0 (3.1)
be g1 and ¢». We denote the set of coefficients of this polynomial 3 =

{(A,B,C) € C*, A # 0} and separate some subsets of this set in the fol-
lowing way:

Ay = {(A>B>C)€@3= 1] <1, |go| < 1},
A = {(A>B>C)€@3= 1] <1, |g2| =1},
An = {A4,B,0)eC, |al=lpl=1, a #a¢},
A = {(AB0)eC, |al=lepl=1, a=a¢}

The root condition holds if the coefficients of the polynomial belong to one
of the sets: Ay, A; and A;;. Then a set Ag = Ay U A; U Ay, is the root
condition set. The analysis of these sets using theorems for zeros in the unit
circle implies[16] lemma for second order polynomials.

Lemma 3.1. The following equalities are valid:

Ay = {|C]?+|BA - CB| < |A]*},

A1 = {|C+|BA-CB| = AP, [C] <|A]},
An = {|C|=|A|, BA=CB, |B| <2|Al},
As = {|C|=|A], BA=CB, |B| = 2/A|}.

This result about root condition we formulate as the following theorem.

Theorem 3.1 [The root condition]. The roots of the second order polyno-
mial are in the closed unit disc of complex plane and those roots of magnitude
1 are simple if

Ar ={|C|> + |BA—-CB| < |A]*, |B| < 2/A|}. (3.2)
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If a = A then the root condition reduces to
A ={|lCP+|B-CB|<1, |B|<2}. (3.3)
fA=1,B=b=0bc R, C =c=_ce R then equality (3.3) corresponds to

root condition (1.3) in Hurwitz’s criterion.
Now we consider (3.1) when A =1 in the form

w4+ Bw+C =0 (3.4)

with B = bePl, C = ce”l, 3,7 € [0,27), b,c € R. Such form of the complex
number Z = ze¥i 2z € R, ¢ € [0,7) with negative z is equivalent to standard
exponential form of complex number Z = |Z|e(¥*™i. Thus, every complex
number Z = |Z|e¥!, € [0,27) we may write in such form. The root condition

set Ag for various  and + are sophisticated (the case v = 0 see Fig. 3).

4. THE ROOT CONDITION FOR COMPLEX POLYNOMIAL OF
THE THIRD ORDER

Let the zeros of the third order polynomial
f(z) =c+bz+az’ +d2*, a,b,c,de C, d+#0. (4.1)

be ¢, ¢ and g3. We denote the set of coefficients k¥ = (a,b,¢,d) of this
polynomial C* = {k eC d# 0} and separate some C* subsets:

Ao = A{lal <1, lg2| <1, Jgs] < 1},

Ap = {l;l <1, |g2| <1, lgs| <1},

A = Aol <1, g2l <1, Jgs] =1},

An = {lal <1, @2 # a3, |la2] = |gs| = 1},

Ay = {lal <1, =g =q, g =1},
A = {a#¢e e#a a# e lal=lel=lal =1},
Ay = {a#e=p=q |la|l=l¢d=1},

Ay = {a=@p=¢=q |¢d=1}.

Let be denote

f* = d+az+b2* +¢é2?,
A=lef> —|d? €R, B=cb—ad, C =ca— bd,
fi = A+Bz+C2% ff =C+ Bz+ AZ?,
fo = JAP = |C]*+(AB - BO)s, f; = AB — BC + (AP — |CP)z,

fs = (AP -IC]")* - |AB - BC|".



Root condition 169

Polynomial is self-inversive if A = 0, B = 0, C' = 0. So the set Ap = Ag U
ATUA;1 UA11 UAs U Ay U Az is the condition that all zeros are in the unit
disc.
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Figure 4. Self-inversive case.
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Figure 5. Non self-inversive case.
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Lemma 4.1. Consider (4.1) polynomial and subsets of Ct

Ay = {A<0, |C)”+|AB - BC| < |A*},
Ap = {A<0, |C*+|AB - BC| < |A]*}

U{A=0, B=0, |b?+2|ba — 3ad| < 9|d|*},
A, = {A<0,/C|<|A], |C? +|AB - BC| = |A]*},
A, = {A4<0,/C| =4, AB = BC, |B| < 2|4},
A, = {A<0,/C|=|A|, AB=BC, |B| =2|4]|},

A = {A=0, B=0, [b]*+2|ba — 3ad| < 9|d|*},
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Figure 6. Root condition.

Ay = [A=0, B=0, |b < 3|d|, |b]* + 2/ba — 3ad| = 9|d|*},
A; = {A=0, B=0,ba = 3ad}.
Then A; = A;.

Proof. We prove those equalities in the case d = 1, because the general case
(d # 0) we get from lemma if a, b, ¢ replace with a/d, b/d, c¢/d.
From Viete theorem |c| = |¢q1] - |g2| - |g3] < 1 and |¢| =1 when |¢1] = |¢2| =

3| = 1. -
If k € Ap then || < 1. If & € Ag then |A] > 0, i.e. |¢| < 1 too. So, from

lemma 2.2, f definition and lema 3.1 (the case A) follows equality Ay = Ay.
Now consider polynomial

F.(2)=f((1+e)2) =1 +e)*2" + (1+e)%az’ + (1+e)bz +¢,e >0,

which all zeros are in the circle S if and only if polynomial f zeros are in the
circle Sey1 = {2z : |2 < 1+ ¢}. For such polynomial:

A. = eP—d)? =P~ (1+e)f = A -0,
B. = c¢b.—acd. =(1+¢)chb—(1+¢e)’a— B, ¢ =0,
C. = cee—bd.=(1+¢e)2ca—(1+e)'b—=C, e—0.

If |¢|] < 1 then |A| > 0 and from condition
C-|* + |A.B. — B.C.| < |A|? (4.2)

we get
IC> + |AB — BC| < |A]. (4.3)
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Coeflicients of the polynomials and its zeros are continuously depending from
each other. So, we find the set Ap N {|c| < 1}.
For |¢| =1 we have

A, = 1-(1+¢)=-6e(1+0(1)) =0, e =0,
C. = (1+¢e)*(ca—b—be(2+¢)) »ca—b, € — 0.

If ca # b then for small € > 0
{‘06‘2 + |A6BE - BEC’E‘ < |A6‘2} =0o.
In the case |¢| = 1,b = ca we have

B. = a(l+e)(1-(1+¢)") = —4ae(1+0(1)), € >0,
C. = —2b(l1+0(1), e =0,

and A=0,B=0,C =0, id. we have self-inversive polynomial. From (4.2)
inequality follows

4e%|al? (14 0(1))” + 8e2(1 + (1)) *|3a — ba| < 36> (1 + 0(1))*, & — 0,

laf? (14 0(1))” +2(1 + o(1))*|3a — ba| < 9(1 + o(1))°, & = 0.

Finally, we get(e — 0):
{la|* +2|3a — ba| < 9} = Ap N {|c| = 1},

ie. AD = /NlD = AO U Al U 1212 U 1213~U 12111~U 1421 U 121111.
IfA=0,B=0then C =0.So, Ap ~ Ag = Ap ~ Ag = As U Ang, where

As = {A=0, B=0, |b*+2/ba — 3ad| < 9|d|*},
{A<0, |C>+ |AB — BC| = |A]*}

Ans

and AS = A111 U A21 U A3, ANS = A1 U A11 U A2.

Let consider self-inversive case. From lemma 2.3 and theorem 2.2 f’ has all
zeros in circle S (see Fig. 4). So, we investigate polynomial f' = 322 +2az+b
and from lemma 3.1 get A C Aq11, Ay C Ao, ;13 C As.

Let consider non self-inversive case. If 0 < |¢| < 1 From lemma 2.1 f;* has all
zeros in circle S (see Fig. 5). So, we investigate polynomial f; = Az?>+ Bz+C
and from lemma 3.1 get AN {0 < |e] < 1} C Ay, AN {0 < Je| <1} C Ap,
AN {0 < |¢| < 1} C As.
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If ¢ = 0 then f(2) = z(2? + az + b) and one zero is g1 = 0. We investigate
zeros of polynomial F = 22 + az + b and get

Ain{e=0} = {c=0, [0 <1, [p*+]a—ba| =1} C A,
Asin{c=0} = {c=0, |b|=1, a=bal, |a| <2} C As,
Ayn{c=0} = {c=0, |b|=1, a=ba|, |a| =2} C A».

So, 1211 C Ay, 12111 C 4117 1‘12 C Az;
Finally, we prove A; C A;,ie. A; = A;. 1

The root condition set Agp = Ap \ (A3 U Ay U Ayq) (see Fig. 6).

Theorem 4.1 [The root condition]|. Polynomial f of the third order is
satisfying root condition if

Ar=({A <0, |CP +|AB — BC| < |A]*}
~{A<0,|C| = |A|, AB = BC, |B| =2|A|})
U{A=0, B=0, [b]>+ 2|ba — 3ad| < 9|d|’}.
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SAKNU SALYGA TRECIOS EILES DAUGIANARIUI
A. STIKONAS
Straipsnyje nagrinéjama Sakny salyga kvadratiniam ir kubiniam daugianariui. Jrodytas

sakny salygos kriterijus daugianariams su kompleksiniais koeficientais ir surastos ja atitin-

kancios sritys specialioje kompleksinio daugianario koeficienty fazinéje plokstumoje.



