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Abstract. Here we state a quantitative approximation theorem by means of nets
of certain modified Hadamard integrals, using iterates of moment type operators, for
functions f defined over the positive real semi-axis ]0,+∞[, having Mellin derivatives.
The main tool is a suitable K-functional which is compatible with the structure of the
multiplicative group ]0,+∞[. Some numerical examples and graphical representations
are illustrated.
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1 Introduction

The theory of the so–called moment (or average) operators in approximation
theory was first considered in the papers [4, 31]. These operators have many
applications to various fields of pure and applied mathematics: from Calcu-
lus of Variations (see [2, 28]) to fractional calculus [6, 20] and stochastic pro-
cesses [14,18]. In the frame of approximation theory by sequences or nets of mo-
ment operators we quote the papers [3,13,27,29,30]. Recently in [6,7,8,9,10,11],
the asymptotic behaviour was studied, obtaining Voronovskaya type formulae.
In particular in [9], linear combinations of moment type operators are con-
sidered, which generate sequences of linear operators with a better order of
pointwise and uniform approximation. In [11] special kinds of iterated mo-
ment operators were considered and it was remarked that linear combina-
tions of iterated moment operators further improve the order of approxima-
tion.

In the present paper we point out the deep connections between of our
iterated operators and the generalized Hadamard integrals, introduced firstly
in [22], and widely used in Mellin analysis, especially in fractional calculus in
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Mellin transform setting (see e.g. [5, 17, 23]). This link enables us to obtain
corresponding results concerning the approximation of a function f defined
over the positive real semi-axis ]0,+∞[, by means of nets of slightly modified
generalized Hadamard operators. The main result is Theorem 2, which gives
a quantitative estimate of the pointwise and uniform convergence in certain
classes of differentiable functions in the Mellin sense (see [5, 16]). We use here
a suitable Peetre K-functional, and a technique introduced in [21]. The last
section considers some suitable examples which illustrate the results by means
of graphical representations and numerical calculations. These calculations
point out that without certain global regularity assumptions on the function f
we cannot obtain the uniform convergence over ]0,+∞[. This gives the main
motivation for the assumptions of Theorems 1 and 2.

2 Preliminaries

Let R+ be the set of all positive real numbers endowed with the measure µ(E) =∫
E
dt
t , where E is any (Lebesgue) measurable set. We denote R+

0 = R+ ∪ {0},
and by N, N0 we denote the set of positive integers and non negative integers
respectively. We will denote by Lp(µ), 1 ≤ p < +∞ the Lebesgue spaces of
p-integrable functions with respect to the measure µ and by L∞(µ) the space
of all the essentially bounded functions. We will denote by ‖f‖p and ‖f‖∞,
the corresponding norms.

For m ∈ N0 we denote by Cm = Cm(R+) the space of all functions
f : R+ → R with continuous m-order derivative in R+. In particular C0 will
denote the space of all the continuous functions over R+. Moreover, we will say
that f ∈ Cm locally at the point s ∈ R+ if there is a neighbourhood Us of the
point s such that f is (m − 1)-times continuously differentiable in Us and the
derivative of order m exists at the point s.

In the following we will say that a function f is log-uniformly continuous in
R+ if for every ε > 0 there exists η > 0 such that |f(s1)− f(s2)| < ε whenever
|log s1 − log s2| < η. This notion was firstly given, in an equivalent form, in
[25, page 7], in terms of the dilation operator. Note that there are functions
uniformly continuous in the usual sense but not in the log-sense and conversely.
For example the function f(u) = sinu is obviously uniformly continuous but not
in the log-sense, while the function g(u) = sin(log u) is log-uniformly continuous
but not in the usual sense. However, the two notions are equivalent on every
bounded interval [a, b] with a > 0.

We denote by BC 0 the subspace of C0 containing the log-uniformly contin-
uous and bounded functions in R+ and by BCm the space of all the functions
such that the k-order derivatives, k = 1, . . .m, are in BC 0. We recall that the
Mellin derivatives of f are defined recursively in the following way [5, 16,25]

Θf(s) = sf ′(s), Θmf(s) = Θ ◦Θm−1f(s), m ≥ 2.

In particular, we have also the following Taylor formula of order m for a func-
tion f in BCm (see [10,25]),
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f(st) = f(s) +Θf(s) log t+
Θ2f(s)

2!
log2 t+ · · ·+ Θmf(s)

m!
logm t

+ hs(t) logm t, s, t > 0,

where hs(t) → 0 as t → 1. If f is bounded, we can assume that hs is also
bounded.

3 The Moment Operator and Its Iterates

Let K : R+ × R+ → R+
0 be the function defined by

K(s, t) =

(
t

s

)
χ]0,s[(t).

It is easy to see that K is homogeneous of degree zero, i.e. K(λs, λt) = K(s, t),
for every λ, s, t > 0, and ∫ +∞

0

K(s, t)
dt

t
= 1.

For every j ∈ N we define the logarithmic moment of order j ∈ N of K as

mj(K) :=

∫ +∞

0

K(s, t) logj
(
t

s

)
dt

t

and, using the change of variable z = t/s, we have easily

mj(K) =

∫ 1

0

logj zdz = (−1)jj!.

For the absolute logarithmic moment of order j, namely

Mj(K) :=

∫ +∞

0

∣∣K(s, t)
∣∣∣∣∣∣logj

(
t

s

)∣∣∣∣dtt
we have Mj(K) = j!. The Mellin–Fejer kernel generated by K is given by, for
w > 0,

Kw(s, t) = w

(
t

s

)w
χ]0,s[(t).

The corresponding moment operator is given by

(Mwf)(s) =

∫ s

0

w

(
t

s

)w
f(t)

dt

t
, w > 0.

We obtain that the corresponding logarithmic moments of order j of the func-
tions Kw are

mj(Kw) =
(−1)jj!

wj
, Mj(Kw) =

j!

wj
.

Math. Model. Anal., 20(2):261–272, 2015.
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Given the function K we define for every n ∈ N the iterated kernel of order n
of K in the following way: for n = 2,

K2(s, t) =

∫ +∞

0

K(s, z)K(z, t)
dz

z
,

and for n > 2,

Kn(s, t) =

∫ +∞

0

K(s, z)Kn−1(z, t)
dz

z
.

It turns out that the iterated functions Kn exist and for the corresponding
Mellin–Fejer kernels we have the following result

Proposition 1. For n = 2, 3, . . . , we have

Kn
w(s, t) =

wn

(n− 1)!

(
t

s

)w
logn−1

(
s

t

)
χ]0,s[(t)

with moments

mj(K
n
w) =

(−1)j

wj

j−1∏
i=0

(n+ i), Mj(K
n
w) =

1

wj

j−1∏
i=0

(n+ i).

Proof. For n = 2 we have

K2
w(s, t) =

∫ +∞

0

w2zws−wtwz−wχ]0,s[(z)χ]t,+∞[(z)
dz

z

= w2

(
t

s

)w
χ]0,s[(t) log

(
s

t

)
,

and the general case follows by an easy induction. The formulae for the mo-
ments follow using Proposition 7 in [11]. ut

The iterated moment operator of order n is defined as

(
Mn

wf
)
(s) =

∫ +∞

0

Kn
w(s, t)f(t)

dt

t
, w > 0

for every f for which the integral is well defined as a Lebesgue integral.
The above integrals are strictly related with the so-called Hadamard-type

integrals, introduced for the first time in [22], and then used in the frame of
Mellin analysis, (see e.g. [5,17,23]). Here we give a slightly different version of
such integrals.

For α > 0 and c > 0, we define the modified generalized Hadamard integral
of order α of a function f : R+ → R as:

(
Jα0+,cf

)
(s) =

cα

Γ (α)

∫ s

0

(
t

s

)c(
log

(
s

t

))α−1
f(t)

dt

t
.



Quantitative Approximation 265

As recently proved in [5], if α > 1, the domain of the operator Jα0+,c is contained
in the space

Xc,loc :=
{
f : R+ → R : (·)cf(·) ∈ L1

loc

}
.

Moreover, it contains the space

X̃c,loc := {f ∈ Xc,loc : ∃r ∈ ]0, 1[, such that f(u) = O(u−(r+c−1)), u→ 0+}.

As an immediate consequence of the definition of the modified Hadamard
integrals, we have (

Mn
wf
)
(s) =

(
Jn0+,wf

)
(s), w > 0. (3.1)

4 Asymptotic Behaviour of Generalized Hadamard Inte-
grals via Moment Operators

We are interested in the asymptotic behaviour of the generalized Hadamard
integrals of order n as w → +∞, using the above relation and the properties of
the iterated moment operators. At first, as an immediate consequence of (3.1)
and Corollary 4 in [11] we obtain

Theorem 1. Let f ∈ L∞(µ) ∩
⋂
w≥1 X̃w,loc be fixed. Let f ∈ C1 locally at

s ∈ R+. Then we have

lim
w→+∞

w
[(
Jn0+,wf

)
(s)− f(s)

]
= −nΘf(s).

In particular, ∣∣w(Jn0+,wf)(s)− f(s)
∣∣ = O

(
w−1

)
(w → +∞),

where the O-term depends on the point s. If f ∈ BC 1 then the estimate is
uniform on R+.

Proof. The first assertion follows easily from (3.1) and Corollary 4 in [11]. For
the second assertion, if f ∈ BC 1, then |Θf(s)| ≤ C, for an absolute constant
C > 0, and so the O-term is independent of s. ut

In the next section we will show by an example that the assumption f ∈
BC 1 is essential for the uniform convergence over the whole positive real semi-
axis.

Our aim is to obtain a quantitative version of Theorem 1 using a K-
functional suitable for the Mellin setting.

In general, the (modified) Peetre K-functional is defined in the following
way. Let (X, ‖·‖X) be a Banach space, Y ⊂ X be a semi-normed subspace, with
the seminorm |·|Y such that Y is complete under the norm ‖f‖Y := ‖f‖X+|f |Y .
Then we put

K(f, t,X, Y ) := inf
g∈Y

{
‖f − g‖X + t|g|Y

}
.

Math. Model. Anal., 20(2):261–272, 2015.
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Taking X = BC 0 and Y = BC 1, our K-functional is defined by

K
(
f, ε,BC 0,BC 1

)
≡ K(f, ε) := inf

{
‖f − g‖∞ + ε‖Θg‖∞ : g ∈ BC 1

}
for f ∈ BC 0 and ε ≥ 0. By Corollary 1 in [12], it follows that this functional
is well defined in the sense that limε→0K(f, ε) = 0. For a general treatment of
K-functionals, see [1,15,19,24,26]. The intimate connections of a K-functional
with approximation theory were developed in [15] and [19].

Associated with our K-functional, we introduce certain Lipschitz classes of
functions, as follows. For α ∈ ]0, 1], we set

LipK(α) =
{
f ∈ BC 0 : K(f, t) = O

(
tα
)
, t→ 0+

}
.

In [12] the following estimate of the remainder Rm(f ; s, t) := hs(t) logm t in
the Taylor formula of order m is proved, which extends a result proved in [21]
for the classical Taylor formula in a slightly different setting.

Lemma 1. For m ∈ N let f ∈ BCm and s, t ∈ R+. Then we have∣∣Rm(f ; s, t)
∣∣ ≤ 2|logm t|

m!
K
(
Θmf,

|log t|
2(m+ 1)

)
.

In particular, for m = 1 we have, for functions f ∈ BC 1,∣∣R1(f, s, t)
∣∣ =

∣∣hs(t) log t
∣∣ ≤ 2|log t|K

(
Θf,
|log t|

4

)
.

We have the following

Theorem 2. Under the assumptions of Theorem 1, if f ∈ BC 1, we have the
following estimate, for w > 0,∣∣w[(Jn0+,wf)(s)− f(s)

]
+ nΘf(s)

∣∣ ≤ 2nK
(
Θf,

n+ 1

4

1

w

)
.

Proof. We start with the estimate of the difference

J :=

∣∣∣∣(Jn0+,wf)(s)− f(s) +
n

w
Θf(s)

∣∣∣∣.
Using the Taylor formula of the first order, and taking into account that∫ +∞

0

Kn
w(s, t)

dt

t
= 1

for every n ∈ N and s > 0, we have

(
Jn0+,wf

)
(s)− f(s) = Θf(s)

∫ +∞

0

Kn
w(s, t) log

(
t

s

)
dt

t

+

∫ +∞

0

Kn
w(s, t)h

(
t

s

)
log

(
t

s

)
dt

t
.
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Therefore,

J ≤
∣∣∣∣∫ ∞

0

Kn
w(s, t) log

(
t

s

)
dt

t
+
n

w

∣∣∣∣ ∣∣Θf(s)
∣∣

+

∫ ∞
0

∣∣Kn
w(s, t)

∣∣∣∣∣∣R1

(
f, s,

t

s

)∣∣∣∣dtt = J1 + J2.

For J1 we have, by the notion of moments and Proposition 1

J1 =

∣∣∣∣m1(Kn
w) +

n

w

∣∣∣∣∣∣Θf(s)
∣∣ = 0,

while for J2 using Lemma 1 and a simple change of variable,

J2 ≤
2wn

(n− 1)!

∫ 1

0

vw logn−1
(

1

v

)
|log v|K

(
Θf,
|log v|

4

)
dv

v
.

Now, let us consider an arbitrary function g ∈ BC 2. Then,

J2 ≤
2wn

(n− 1)!

∫ 1

0

vw logn−1
(

1

v

)
|log v|

(∥∥Θ(f − g)
∥∥
∞ +

|log v|
4

∥∥Θ2g
∥∥
∞

)
dv

v

= 2M1(Kn
w)
∥∥Θ(f − g)

∥∥
∞ +

1

2
M2(Kn

w)
∥∥Θ2g

∥∥
∞

=
2n

w

[∥∥Θ(f − g)
∥∥
∞ +

1

4

n+ 1

w

∥∥Θ2g
∥∥
∞

]
.

Taking now the infimum over all functions g ∈ BC 2, we get

J2 ≤
2n

w
K
(
Θf,

n+ 1

4

1

w

)
.

Thus, the assertion follows. ut

As a consequence of Theorem 2, for functions f ∈ BC 2 we have the following
direct estimate

Corollary 1. If f ∈ BC 2, we have∣∣w[(Jn0+,wf)(s)− f(s)
]

+ nΘf(s)
∣∣ ≤ n(n+ 1)

2

1

w

∥∥Θ2f
∥∥
∞.

Proof. If f ∈ BC 2, then we can write

K
(
Θf,

(n+ 1)

4w

)
= inf
g∈BC1

{
‖Θf−g‖∞+

(n+ 1)

4w
‖Θg‖∞

}
≤ (n+ 1)

4w

∥∥Θ2f
∥∥
∞,

by choosing g = Θf. Therefore the assertion easily follows. ut

More generally, we have the following further consequence of Theorem 2,
whose proof is clear.

Corollary 2. Let f ∈ BC 1 such that Θf ∈ LipK(1). Then∣∣w[(Jn0+,wf)(s)− f(s)
]

+ nΘf(s)
∣∣ = O

(
w−1

)
, w → +∞,

where the O-term is uniform with respect to s.

Math. Model. Anal., 20(2):261–272, 2015.
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5 Examples and Some Numerical Evaluation

We give two examples to show the asymptotic behaviour of the generalized
Hadamard integrals (of the second order); the first involving the function es

(see Figure 1) and the second involving the function sin(log s) (see Figure 2).
Note that the function f(s) = es does not belong to the space BC 1 since its
Mellin derivative is not bounded over the whole positive real semi-axis. As we
will show, we have a uniform convergence over the compact subsets of R+ but
we have not the uniform convergence over the positive semi-axis. The second
function f(x) = sin(log x) belongs to BC 2 since its Mellin derivative Θ2f is
given by − sin(log x) and so ‖Θ2f‖∞ = 1. The estimate of Corollary 1, gives
now ∣∣w[(Jn0+,wf)(s)− f(s)

]
− n cos(log s)

∣∣ ≤ n(n+ 1)

2

1

w
,

which gives a uniform estimate of the asymptotic formula.

Figure 1. Uniform convergence of the modified generalized Hadamard integrals of order
2 of the function ex on the interval ]0, 1]. As the grey level becomes darker the value of the

parameter w increases of a factor 2 starting from 10. Seven approximations are shown,
therefore from w = 10 up to w = 640.

The generalized Hadamard integrals (J2
0+,wf)(s) are computed numerically

using a modified trapezoidal rule with points, taking into account the singu-
larity at the point zero; that is, the first interval of the integration is further
divided into 10∗w points. We use this method in the spirit of a mere example;
this is not the best method for integrating such integrals. Indeed, one of the
Referees kindly suggested the use of a Gauss–Legendre quadrature rule. We
report the results found by the Referee in the last column of each table. For
the graphics of Figures 1 and 2 we took a discretization of 0.01. Tables 1 and 2
report the values of the generalized Hadamard integrals (J2

0+,wf)(s) evaluated
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Figure 2. Uniform convergence of the modified generalized Hadamard integrals of order
2 of the function sin(log x) on the interval ]0, 3]. As the grey level becomes darker the value

of the parameter w increases of a factor 2 starting from 10. Seven approximations are
shown, therefore from w = 10 up to w = 640.

Table 1. Hadamard integrals values for f = ex on s = 0.5.

w e0.5 − (J2
0+,w

f)(0.5) Gauss–Legendre quadrature

rule with 8192 points

10 0.136285 0.1349117163
20 0.075532 0.0741588938
40 0.040405 0.0390320567
80 0.021419 0.0200465051

160 0.011535 0.0101617769
320 0.006489 0.0051163015
640 0.003940 0.0025671047

1280 0.002659 0.0012858036
2560 0.002016 0.0006434662
5120 0.001695 0.0003218744

10240 0.001534 0.0001609726
20480 0.001453 0.0000804951
40960 0.001413 0.0000402498
81920 0.001393 0.0000201254

163840 0.001383 0.0000100629
327680 0.001380 0.0000050315
655360 0.001372 0.000002516

1310720 0.001398 0.000001258

at the point s = 0.5 respectively for the function ex and sin(log x). We end the
tabulations when the values start becoming worse, because of the numerical
approximation problems.

Finally we show that the Hadamard integrals for the function ex do not
converge uniformly on ]0,∞). To this end, we evaluate in Table 3 the difference
|(J2

0+,w)(w)− ew| as w →∞ (as far as it is numerically possible to go!): In this
case, the trapezoidal rule has been splitted into two parts: one for the interval
[0, 1] and the other for the interval [1, w]; the number of points taken for both

Math. Model. Anal., 20(2):261–272, 2015.
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Table 2. Hadamard integrals values for f = sin(log x) on s = 0.5.

w sin(log 0.5) − (J2
0+,w

f)(0.5) Gauss–Legendre quadrature rule

with 8192 points

10 0.131360 0.1319625976
20 0.071231 0.0717683965
40 0.036687 0.0372171072
80 0.018394 0.0189255291

160 0.009008 0.0095398617
320 0.004256 0.0047889300
640 0.001866 0.0023991800

1280 0.000668 0.0012007643
2560 0.000068 0.0006006752
5120 −0.000231 0.0003004108

Table 3.

w ew − (J2
0+,w

ex)(w) Gauss–Legendre quadrature rule

with 2048 points

10 16082.6708556401 16082.5451
20 359195544.652526 359191896
40 1.75421291539295e+17 1.75419427e+17
80 4.1424310899933e+34 4.14238607e+34

160 2.29880188317864e+69 2.29877662e+69
320 7.06252872079612e+138 7.06245068e+138
640 6.65831993738322e+277 6.65824616e+277

Table 4.

w e640 − (J2
0+,w

ex)(640) Gauss–Legendre quadrature rule

with 4096 points

640 6.665632367e+277 6.6582462e+277
1280 4.939299747e+277 4.9319071e+277
2560 3.203537754e+277 3.1961426e+277
5120 1.870931917e+277 1.8635357e+277

10240 1.021377889e+277 1.0139811e+277
20480 0.537456303e+277 0.5300593e+277
40960 0.278551328e+277 0.2711541e+277
81920 0.144552914e+277 0.1371559e+277

163840 0.076373845e+277 0.0689788e+277

the numerical integrations is 100 ∗ w.

For the sake of completeness, we report also the values showing the (slow)
pointwise convergence in s = 640 (see Table 4).
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