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ABSTRACT

The problem of classification of objects located in domain D C R? based on observations
of random Gaussian fields with a factorized covariance function is considered. The
first-order asymptotic expansion for the expected error regret is presented. Obtained
numerical results allow us to compare suggested expansion for some widely applicable
models of spatial covariance function.

1. INTRODUCTION

The notion that data close together in space are likely to be correlated is
natural. And one of the most important (sometimes even unique) statisti-
cal characteristic of random field which describes the statistical spatial re-
lationship between observations is a spatial covariance function o (r,s) =
E{X(r)—E(X(r)(X(s)—E(X (s)))}, where {X (t),t € D} is an ob-
served random field. We restrict our attention on covariance functions, which
depend only on the distance h = r — s between points, i.e. we consider only
second-order stationary random fields. When o (r,s) = o (h) is a function on
both the magnitude and direction of h, the covariance function is said to be
anisotropic; otherwise, it is said to be isotropic one.

In geostatistics literature, for the analysis of spatially correlated data the
concept of a variogram is used, see, e.g., Matheron (1962), Cressie (1994) and
others. This function is similar to the covariance function. By the definition,
the variogram is var (X (r) — X (s)) = 2y(r —s), r,s € D. (The quantity
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27 (+) has been called a variogram (as <y (-) - semivariogram) by Matheron
(1962).) There is a simple relationship between the semivariogram and co-
variance function:

(k) = (0) o (h).

So, we interchangeably can use one of these concepts. In general, using var-
iograms is better than using covariances because the estimator of variogram
obtained by the method-of-moments (Matheron, 1962) is unbiased.

Obvious, v (h) = v(—=h) and v(0) = 0. If v(h) — 69 > 0, as h — 0,
then 6y is measurement error, which has been called the nugget effect. If

the semivariogram has the property |hllim v (h) = Y00 < 00, then 74 has
—00
been called the sill of the semivariogram. The range of semivariogram is

the distance after which semivariogram becomes constant, see, e.g., Cressie
(1994).

Christensen (1989), Cressie (1994) present several covariance models, which
are most often used in geostatistics. We consider three of them.

The isotropic spherical covariance function is given by expression

o (1- 35+ 310), 0<n <6,
os (|h],0) = 0o + 01, Ih| =0, (1.1)
0, |h| > 92,

for nonnegative 6y, 61, 5. The nugget effect is 6y and the sill is 8y + 6,. For
this model, observations more than #> units apart are uncorrelated, so the
range is 6.

The exponential covariance function is

_ 252 2
0. (1. 6) :{ 01exp( 021/ h1+h2), Ih| > 0, 12)

0o + 01, |h| =0,

for nonnegative 6y, 61, 65. Here t is the parameter of anisotropy. When
t = 1, the exponential covariance function becomes isotropic one; otherwise
it is anisotropic. The nugget effect is 6y, the sill is 6y + 61, and the range is
infinite. While the range is infinite, correlations decrease very rapidly as h
increases. Of course, this phenomenon depends on the value of 6;.

The Ornstein - Uhlenbeck covariance function is defined as follows

N 01 exp (—02 (t2h% + h%)) s |h| > 0,
Oou (h,0) - { 00 + 01, |h| — 0’ (13)
for 6, 61, 0> nonnegative. It is anisotropic covariance function, when t # 1.
In the case of ¢ = 1 it becomes a well known isotropic covariance function
often called the Gaussian covariance function. The behavior of the Ornstein
— Uhlenbeck model is similar to that of the exponential model. However, the
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covariances at distances greater than one approach zero much more rapidly
than in the exponential model. Also, for small distances, the covariance ap-
proaches the value #; much more rapidly then does the exponential.

In our paper we use the correlation functions, which can be easy defined
from covariance function by the relation p (h) = o (h) /o (0).

2. CLASSIFICATION PROBLEM

Suppose Q, 2 are two mutually exclusive and exhaustive classes of
objects. Let X be a p-dimensional feature vector, which is measured on each
object. For objects randomly chosen from €;, X follows the multivariate
distribution with density function p; (x;6;) = p; (z), which belongs to the
parametric family of regular densities F; = {p; (x;6;),6, € ©, C R™}, 1 =1, 2.

Discriminant analysis deals with the problem of identifying the class of
object for which X is measured. For a zero-one loss function, the Bayes
classification rule (BCR) dp (z) minimizing the probability of misclassification
is equivalent to assigning X = z to (; if

mpr (T) = kzélvg TPk (T)

where 7 is the prior probability of ;. Then BCR dp (x) could be defined as

dp (z) = arg [ax (z).

Let Pp denote the probability of misclassification for BCR, dp (x) or Bayes
error rate (see, e.g., [1]).

In practical applications, the density functions {p; (z)} are seldom com-
pletely known. Often they are only known up to the parameters {6;}, i.e. we
may only assert that p; (z) is one element of a parametric family of density
functions F;. Under such conditions, it is customary to estimate 6; from the
training sample 77 = {Xj1, ..., X;n,} from Q, for I = 1,2. Put T = Ty U T5,
N = N + N,.

Let 6; be the maximum likelihood estimator (MLE) of §; from T; (I =1,2).

The estimator of rule dp (z) is called a plug-in rule dg (x,§1,§2) and is
defined by

dp (56,51,52) = arg max mjpj (maé\k) .

The actual error rate P4 of dp (a:, 51, 52) is the probability of misclassifying a

randomly selected object with feature X independent on 7" and is designated
by

Pa= Yo [ (10 (s (2.50.52)) ) ()
=1
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where § (-, -) is Kronecker’s delta.

DEFINITION 2.1. Expected error regret (EER) for dp (-,51,52) is the expec-

tatiAon Aof the difference between P4 and Pp with respect to the distribution
of 1, 05, i.e.,

EER = E (P4) — Pp.

The purpose of this article is to find an asymptotic expansion for EER. The
case of independent normally distributed observations in training sample from
one of two classes with ¥; = ¥, [ = 1,2, was considered in [2]. [3] has been
made the generalization for the case of arbitrary number of classes (I > 2)
and regular class-conditional densities.

3. MAIN RESULTS

Suppose that any point r = (r;,r3) € D C R? can be assigned to one of
two prescribed above classes 1, Q2 with positive prior probabilities 71, 7,
respectively. Here we identify objects by points on D. The class of the point
r is given by the random 2-dimensional vector Y,I' = (Yi,,Ya,) of zero-one
variables. The lth component of Y is defined to be one or zero according as a
class of point r is or not Q; (I = 1,2). Then Y, ~ Mults(1; (71, 72)).

Suppose that X, means the observation of X at point r € D. A decision is
to be made as to which class the randomly chosen point r € D is assigned on
the basis of observed value of X,.. Let

2

X, = Z}/lrﬂl + €r, (31)
=1
where p1, g2 € RP, uy # po and the noise €, = (e}n, .. ,ef) is the observation

of the second-order stationary multivariate random field at location r € D
with zero-mean vector.

The essential assumption is that {e,} is Gaussian field with spatially fac-
torized covariance. Hence, the common class-conditional covariance between
any two observations X, and X at points r, s € D belonging to €; can be fac-
torized as cov (X, Xs/r,s € Q) = pl(h)X, (r # 5), where p!(-) is the spatial
correlation function (I = 1,2), and h =r — s, ¥ = cov (€, €,.).

Also here we assume that the effect of cross-correlation between samples
from different classes is negligible. In this paper we suppose, that it is equal
to zero, i. e., cov(X,, Xs/r € Q1,5 € Q2) = 0.

Let D; = {sll,...,slNl} C D be the set of points belonging to class ,
[ =1,2. Then X;; means the observation of X at point s}, i.e. Xj; = X (s}),
j=1...,N,1=1,2.
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/
Then the expectation for N;p x 1 stacked vector TlV = (Xl/1> ceey Xl/N,) is

,u'l+ =1n ® i, (l = 152)7 (32)

where 1y, is the N;-dimensional vector of ones, and ® is the Kronecker prod-
uct. The covariance matrix of TlV is

SH=C®%, (3.3)

where C; is the spatial correlation matrix of order N; x N;, whose (i,j)th
element is p (s} — %) (5,5 =1,...,Ny).

Suppose that ¥ and C; are known and y; are unknown (I = 1,2). In this
paper maximum likelihood estimators (MLE) fi; of u; based on T; are used.

Let C;' = (c;j)

Lemma 3.1. Forl = 1,2 MLE of 1 based on Ty is

N,
1 Z’ J
M= — c[ Zij,
G
j=1

Jo— Ny ij - N j
where ¢/ =321 ¢ and ¢ =370 ¢ .

Proof. The log-likelihood of Tj is

InL; = —const— % (NiIn|Z| +pln|C]) —
1. - . - _ _
-5 (c tr (E 151) +ctr (E ! (e — 1) (e —:L’z)/)) ,

where T; = ﬁ Z;V:llcijl‘lj and S; = L ENZ lcij (l‘lj - Tl) (l‘li —fl)/.

o 2eij=
OlnL; __
Tll = 0, we complete the proof of Lemma. B

Solving equation

MLE under spatial sampling of Gaussian random fields was studied by [4].
They gave the regularity conditions which ensure consistency and asymptotic
normality of the parameter estimators. We assume that these conditions hold.

Puty =1InZ2t Afly = fy—p (I = 1,2) and let A% = (u; — p2)) 71 (g — po)
be the Mahalanobis distance. Let ® (-) and ¢ (-) denote standard normal dis-
tribution and density functions, respectively.

The plug-in discriminant function can be written in the form

/
. .. . .
i o, i) = (0= 5 0+ 7)) G — 7). (3.4
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Then the actual error rate for dp (z, i1, fi2) (see [5]) is
(= S+ 1) (G i) +
V@ -7 = @ - )
(2 = (i + ) (i — fio) +
Vi — o) = (i - fiz)

PA:ﬂ'lq)

(3.5)

+7T2(§

(3.6)

Theorem 3.1. First-order asymptotic expansion of FER in terms of (ci')_1
for dp (z, i1, i2) , using MLE [y, [i2, is

EER = . iﬂw (—% + (=1 %) (3.7)

<<(—% +(=1)! %)2 +(p— 1)> /A) +o (@)

Proof. Since P4 is invariant under linear transformations of data we use
the convenient canonical form of ¥ = I and pu; = —pus = %A, where A =
(A,0,... ,0)/ (see [6]). Expand P4 in Taylor series about the point i =
and then averaging with respect to the distribution of fi; (I = 1,2). Expansion
for E (P4) dropping the third order terms is as follows
2 12
E(Py) 2 Pp+Y PUEE) +5 Y tr (AYEAmA)),  (38)
=1 Lk=1

(1)

where P, is the vector of the first-order derivatives of P4 by fi; evaluated at

w (I =1,2). Similarly, Pl(i) denotes the matrix of the second-order derivatives
of P4 by p; and py evaluated at p; and g, respectively, (I,k = 1,2). In
considered situation there was obtained (see [8]) that

_ A A v
PB—’]Tl@ <—5—Z>+TF2¢ <—E+K>

From Lemma and assumptions stated before we have

E(Am) = E(AmAp) =0, (3.9)
E ((Aﬁl)Q) - Ci (3.10)
l

Then using (3.9) and (3.10) in (3.8) we complete the proof of the stated
theorem. W
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Corollary 3.1. Whether T; consists of statistically independent X;;, j =
1,...,NN;, then ¢ = N; in formula (3.7).

The corollary holds since Cfl = [ for statistically independent Xj;, j =
,-- -, N

The result of the proved theorem could be used in obtaining the optimal
sampling design that ensures the minimum of asymptotic EER for the fixed
training sample size N.

1

4. EXAMPLE

As an example we consider the integer regular 2-dimensional lattice and use
the second-order neighborhood scheme for training sample.

Also we assume that there are two differently taken training samples: 1)
4 spatially symmetric observations in training sample for each class; 2) 5
observations in training sample for the first class and 3 for the second one.

Figure 1. Scheme 1. Figure 2. Scheme 2.

Three spatial correlation functions obtained from the covariance functions
defined by (1.1), (1.2) and (1.3) are considered.
The asymptotic expected error regret

2
1 Y 1 A
AEE £ - _ -1
R ;:1 4ci.7rz<P< N 2)

(((—% L8 o 1)) /A)

for each correlation function is computed.

In Table 1 values of AEFER with m; = m = 0.5 are presented. Here
AEER;,q is AEER in the case of independent observations (considered for
comparison), AEER,, AEER., AEER,, are AEER for spherical (p), expo-
nential (p.) and Ornstein-Uhlenbeck (p,,,) correlation functions, respectively.
As it was already mentioned, the spherical correlation function is isotropic one.
We chose the range value #» = 3 for this function. In general, p. and p,, are
anisotropic functions, but by choosing the value of ¢ = 1 we obtain isotropic
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Table 1.
Values of AEFER for different correlation functions.

A Pg  AEER;,; AEER; AEER!® AEER" AEERY, AEER&S

0,28325  0,37089  0,37531  0,36293  0,37101
0,09969  0,13625  0,17527  0,17804  0,17191  0,17635

0,50 0,40129 0633 026765 037034 037512 036274  0.37144
0,14194  0,17952  0,18123  0,17663  0,17945
0,14067  0,18421  0,18639  0,18025  0,18426
L00 030854 004951  0,06767  0,08705  0,08842  0,08538  0,08759
’ ’ 0,05281  0,13293  0,18393  0,18629  0,18015  0,18447
0,07049  0,08915  0,09000  0,08772  0,08912
0,09136  0,11963  0,12105  0,11706  0,11966
150 029663 003915 004305  0,05653  0,05743 005545  0,05688
’ ’ 0,03429  0,08633  0,11945  0,12099  0,11699  0,11981
0,04578  0,05789  0,05845  0,05697  0,05787
0,06446  0,08441  0,08541  0,08259  0,08443
900 015866 002268 003101 0,03989  0,04052  0,03912  0,04013
’ ’ 0,02419  0,06091  0,08427  0,08536  0,08254  0,08452
0,03230  0,04085  0,04124  0,04019  0,04083
0,04622  0,06052  0,06124  0,05922  0,06054
250 010565 V1627 0,02223  0,0861 002905 002805  0,02878

0,01735  0,04368  0,06043  0,06121  0,05919  0,06061
0,02316  0,02929  0,02957  0,02882  0,02928

0,03258  0,04267  0,04317  0,04175  0,04268
0,01147  0,01567  0,02016  0,02048  0,01978  0,02029
0,01223  0,03078  0,04260  0,04315  0,04173  0,04273
0,01633  0,02065  0,02085  0,02032  0,02064

3,00 10,06681

functions. In Table 1 there are presented both isotropic and anisotropic cases
(denoted by index is and anis, respectively). Each cell contains 4 rows. The
first row presents values of AEER when there are no nugget effect (6p = 0),

ie. 901101 =1 and the second one gives values of AEER, when nugget effect
61 _ 1)

Oy = % is assumed (then 5o17; = 1)- To calculate quantities presented in
the first and second rows the scheme of spatially symmetric observations (1.)
was used. The third and fourth rows contain AEER for 6, = 0 and 6 = %,
respectively, but in training sample 5 observations for the first class and 3 for
the second one was taken.

For all described cases, the AEER approaches zero when distances A in-
creases. As it was expected, AEER for the case of independent observations
is the smallest one.

The comparison of AEER in the case of independent observations and in
the case of dependent observations (three considered schemes of correlation
functions) is presented in Table 2. In the first row of this table ratios for 6, = 0
(no nugget effect) and different training sample schemes (upper quantity in
the cell is for the Scheme 1 and lower one for the Scheme 2) are presented,
as in the second row the same situation is presented only the nugget effect
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0y = % is used.
It can be seen from Table 2, that the bigger the nugget effect, the closer
ratio to one (see the second row of Table 2), because with increasing the
nugget effect the situation approaches independent case.
Comparing columns (ratios for the same nuggets), we can determine which

of the correlation functions gives smaller AEER. For instance, %TRQ‘:D =

0.3519 and % = 0.2688 (for 6, = 0); the ratio of these two ratios is
E

equal 1.31, so, Spherical correlation function is better (gives smaller AEER)
than Exponential isotropic correlation function for the Scheme 1. In a similar
way other functions can be compared. It is easy to see, that Spherical function
gives smallest AEER in all considered cases. Also it can be shown, that
isotropic correlation functions give smaller AEER than anisotropic do.

Table 2.
Ratios of AEFER;,q and AEER in the case of dependent observations.
Rati AEER[ND AEERIND AEERIND AEERIND AEER[ND
ario AEERg AEERLS AEERENTS AEERL, AEERZNTS
00 =0 0,3519 0,2688 0,2656 0,2747 0,2687
0= 0,3973 0,2871 0,2835 0,2931 0,2863
0y = 3 0,7317 0,5688 0,5599 0,5799 0,5653

4 0,7491 0,5923 0,5867 0,6020 0,5926
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STATISTINIS KLASIFIKAVIMAS REMIANTIS
ATSITIKTINIU GAUSO LAUKU STEBEJIMAIS

J. SALTYTE, K. DUCINSKAS

Nagrinéjamas uzdavinys apie objekty i§ srites D C R2 klasifikavima, remiantis atsitikti-
niy Gauso lauky stebéjimais. Pateikti asimptotiniai laukiamos paklaidos jverciai. Atlikus
skaitinio modeliavimo eksperimenta naujasis skleidinys lyginamas su kitais zinomais sklei-

diniais.



