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ABSTRACT

An inverse problem of photo-acoustic spectroscopy of semiconductors is investigated. The
main problem is formulated as the integral equation of the first kind. Two different
regularization methods are applied, the algorithms for defining regularization parameters
are given.

1. THE STATEMENT OF THE PROBLEM

An inverse problem of photo-acoustic spectroscopy of semiconductors taking
into account carrier diffusion and recombination consists of the recovering of
real function f(z),z € (—1,0),1 > 0, which is a part of the following boundary
value problem [1]:

T (L s iomie) + f@) =0, (R
—Dn/(0) = vgn(0), Dn'(=1) = vsn(=1). (1.2)

Values of ®(0) are measured in the experiment for different values of frequen-
cies wy, ws, ...,wn. Here the function ®(x),z € (—(s +1),1,),15,l; > 0 is the
solution of the boundary value problem

d*®(x) iw

= (@) O(z) — V(x), (1.3)

(—(l,+1) =0, &(,)=0. (1.4)
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Here a(z) is a known piecewise constant function and

— iwn(l.)) S [_l>0];
Vie) = { 0, v ¢ [-1,0].

Using Green’s functions for boundary value problems (1.1)-(1.2) and (1.3)-
(1.4), the inverse problem (1.1), (1.2) is reduced to the solution of the Fred-
holm integral equation of the first kind [2]

[ K(w.0)f(a)ds = g(c) (1.5)

with the kernel K (w,z) of the exponential type. It is well known that such
problem are ill-posed. Since the function g(w) is measured only for finite
discrete set of frequencies wy,ws, ..., wn, the problem (1.5) is discrete ill-posed.
Furthermore, any measured data contain random errors €;,j = 1,2,...,IN
bounded by the errors level

1/2

N
N_IZE? <4
j=1

for some positive §. Therefore, for the numerical solution of the inverse prob-
lem it is necessary to calculate the function f(z) on the basis of discrete data
gj,J =1,2,..., N of the following form:

gj :g_]-—l—ej:(gaj,f)X+ej,j:1,2,...,N, (16)

where ¢;(z) = K(wj,z) are known linearly independent functions, f,¢; €
X, X is a Hilbert space with the inner product

0
(0> P)x :/—z oj(z)f(z)dx.

A lot of problems in signal processing, geophysics can be formulated in the
form (1.6), a good overview of discrete ill-posed problems is given in [3; 4].

Because of finite number of data, the solution of the inverse problem is
nonunique, therefore, we look for the normal pseudo-solution f¥(z) of the
problem (1.6). It can be shown that f*(z) has the form

(@) = e@)Q'7, (1.7)

where (p(ZE) = (()01(.’1,'),()02(.’17), 780N(m))7§ = (515527 7§N)5Q is N x N Gram
matrix with elements ¢;, = (¢;,¢x), 4,k = 1,2, ..., N. See, for example, [5].
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Since, the inverse problem (1.6) is ill-posed, the matrix Q! is ill-conditioned
and for the numerical solution it is necessary to use a special regularization
method. The Tikhonov’s regularization method is very popular, which is
convenient to use in semi-continuous form [6]. Accordingly to this scheme,
the approximated solution is the function f,(z) which minimizes on the space
X the functional

N

S 1(F.05) — g + allflix. f € X.

Jj=1

Here « is the regularization parameter which should be chosen. Although,
during last thirty years the theory of regularization is quite well developed,
the problem of finding parameter « is still important. See, for example, some
recent papers [7; 8; 9; 10; 11; 12].

2. THE REGULARIZATION PARAMETER PROBLEM

All methods for determining the regularization parameter o can be divided
into several types accordingly the used additional information. One group of
methods uses a priori information concerning the error level §. Usually one
use the discrepancy principle [13]. Tt is noted that the discrepancy principle
yields oversmoothed solution. It is shown in [14] that this method provides the
smallest error propagation in the approximated solution but it gives the worst
resolution. In reality, the error ||fo — 7| can be reduced for some greater
error propagation at the expense of improving the resolution. Such approach
leads to the majorant principle [13], if an estimate of ||f, — fT]| is available
[14]. Such approach was used also, for example, in [15; 16]. It should be noted
that such estimate is not possible for entire X space and further assumption
concerning the upper bound of the norm || f*]| is necessary. In this case, the
optimal choice of « is possible.

If a priori value ||f*]| is unknown, then one try to obtain it from the data,
for instance, using the norm || f,||. Such approach is realized in [15]. We also
use this idea in our paper.

Unfortunately, the sharp estimate of ¢ is desirable, since the accuracy of
|fa — fT|| is very sensitive to the change of §. Therefore, we are interested
in methods that do not use the error level §. We mention L-curve method
[7; 8], quasi-optimal choice [13], cross-validation method [6] (see also [9]).
Unfortunately, all these methods are heuristic and they can not provide the
convergence f, — f as § — 0, where f is the solution of the integral equation

0
/_ K, @)ds = 50,

or of operator equation
Tf=7 (2.1)
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with a compact operator T in the Hilbert space X. Really, if for any g — g the
convergence fo = Ry(5)9 — f = T7'g holds and R,59 = Rg, then simply
R =T7"! and R is continuous, i.e. the inverse problem (2.1) is not ill-posed.
So, for discrete ill-posed problems we should not expect that for n — oo and
d — 0 we will get the convergence f, — f1. This means that any heuristic
method of choosing the regularization parameter sometimes fail even for finite
n. The non-convergence of the L-curve method is proved in [10].

3. THE METHOD OF THE REGULARIZATION FUNCTION

As it follows from [6], the regularized solution f,(z) has the form

fo(@) = 0(2)(Q + aB) g, (3.1)

where E is the unit N x N matrix. Our analysis is based on this formula and
the estimate obtained earlier in [14]

|falz) = F(2)] < Ao, 2) (8 + allgll2), (3.2)
where
¢=Q 'y,
) _ N 2]2(35)
A (o, z) = ]z:; W,

(21(2), 22(2), ..., 25 () T = Ugp(a),

UDUT is the orthogonal decomposition of the matrix @, D = diag{dy, da, ...,
dn} is the diagonal N x N matrix of eigenvalues d;,j =1,2,...,N.

If an estimate of ||¢|| is known, then the optimal choice of the regularization
parameter « is that which provides minimal right-hand side of the inequality
(3.2) (the majorant principle). We note that such regularization parameter
depends on z, hence we have the regularization function a = a(x), z € (=1,0).

Usually ||¢|| is unknown, in this situation we estimate ||g|| from the data.
The simplest way is to substitute the true vector ¢ with the vector

7o = (Q + aE)_lg-

However, more precise approach can be used. From the definition of the g,
substituting ¢ = g+ € = Qg + € we deduce the equality

q=qo+a(Q+aE) 'q—(Q+aE) e (3.3)
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where € = (€1, €2,...,ex) | . Substituting this formula for ¢ into the right-hand
side m times, we have

¢=) o HQ+aB)Yg=) o Q+aE) Te+a™(Q+aE) g (34)

j=1 j=1

If m is quite large and a < 1, then it is sufficient to use the first term. Substi-
tuting it into (3.2), we obtain the method for the choice of the regularization
parameter. This method is not heuristic, since it uses the error level §.

4. THE ANALYSIS OF SOME CLASSICAL METHODS

It is possible to use different values of the number m. Formula (3.4) allows
us to analyze some well-known classical methods. For example, if m = 2 we
obtain from (3.4) the quasi-optimal value of regularization parameter a;, which
can also obtained from the relation criterion function. Really, for m = 2 we
have J

~ oy, e

¢~ o+ (Q+aB) g =g — 5>

and therefore
adfq

+ ~ _ e
frrfa=g5o

The best fitting is to find a providing minimum to the criterion function

||oz‘g—;‘|| (quasi-optimal value). In similar way the criterion function is formu-
lated in [13].

If we use m = 1 and the formula (3.3), we obtain the inequality

lall2 < [lgall2 +11(Q + «B) =11 (8 + a|gl])-

In order to find the best estimate of ||¢||2 we need to minimize the right-hand
side of the inequality. We may expect that the minimizer a of the criterion
function

el ol + 6

(@ + aE)~! ’
will be close to the optimal value. The constant § does not change the position
of the minimum and may be omitted. Neglecting the term «f|g||2, we obtain
the criterion function of the cross-validation method [6]. It can be seen that
this method is not quite precise because it uses m equal only to 1. The cross-
validation method was suggested for the case when errors €¢;,7 = 1,2,...,N
are a white noise. This assumption is crucial for the application of the cross-
validation method. Using our scheme and m > 1 we may use such criterion
function without requiring the a priori distribution of measuring errors € as
well as in situations when the cross-validation method fails.
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DISKRECTIUJU BLOGAI SALYGOTU UZDAVINIU KLAUSIMU
A.A. STEPANOV

Darbe nagrinéjamas foto-akustinés spektroskopijos puslaidininkiuose uzdavinys, kuriame i
vertinami nedéjy difuzijos ir rekombinacijos procesai. Reikia atstatyti saltinio funkcija f(z),
jei zinoma antrosios eilés difuzijos lygtis ir atitinkamos krastinés salygos. Naudojantis ma-
tavimy, atlikty ivairiuose dazniuose, rezultatais sprendziamas atvirkstinis uzdavinys, keli
reguliarizacijos algoritmai, sprendziamas reguliarizacijos parametry parinkimo uzdavinys.

Naujieji metodai yra lyginami su klasikiniais reguliarizavimo algoritmais.



