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ABSTRACT

A priori estimates expressing continuous dependence of the solution of a first order
evolutionary equation in Hilbert space on initial condition, right hand side and operator
perturbations are obtained in time—integral norms. Analogous results hold for
corresponding finite difference schemes.

1. INTRODUCTION

While solving differential equations, one is often in a situation that the coeffi-
cients are not given exactly, but approximately (e.g. as a result of a physical
measurement). Therefore, the problem of stability for the variable coefficients
differential equation is of great importance (coefficient stability). Analogous
problem is present in corresponding numerical methods which approximate
the differential equation. In spite of importance of this problem a priori esti-
mates expressing continuous dependence of the solution on the right hand side
and operator perturbation (so called strong stability) till recent times have
been obtained only for stationary problems (see [2], [4], [5], [10], [12]). Strong
stability of difference and operator—difference schemes were investigated in
[3], [7], [8], [9] and [11]. In these papers corresponding a priori estimates were
obtained in uniform in time norms. Using integral in time norm [7] we proved
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a priori estimates under very weak assumptions on the right hand side of the
equation. We applied this approach investigating the accuracy of the solution
of difference schemes for the problems with generalized solutions (see [3], [6],

[9], [11]).

This paper deals with the construction of stability estimates for the first
order evolutionary problems in Hilbert spaces, and corresponding finite differ-
ence schemes, in the case of perturbed operators, right hand sides and initial
conditions. A priori error estimates in time—integral norms are obtained under
some natural assumptions on perturbed operators.

2. STABILITY OF OPERATOR-DIFFERENTIAL SCHEMES

Let H be a Hilbert space with the inner product (-,-) and norm || - ||. Let A
be a constant, self-adjoint, positive definite linear operator in H, i.e.

A(t) = A(0), A=A" >IE, 0 = const > 0,

where E is the unit operator in H. We denote Hp, where D = D* > 0, the
space with the following inner product and norm

(y,v)p = (Dy,v),  [lyllo =V (Dy,y).
We consider the Cauchy problem

d
d—?#—Au—f(t), 0<t<T;  u(0)=muo, (2.1)

where ug is a given element of H, f(t) is a given function and u(t) is an
unknown function with values in H.

Using the energy method and Fourier expansion we can prove the following
assertion.

Lemma 2.1. The solution of the problem (2.1) satisfies a priori estimates:
T T
du(t) ||2
[ (rawoe + [ %52 ) ae < 2ol 2 [ s an, 22

T 2
lu(®) = w(@)[]*
/||u ||Adt+// |t_t,|2 dt dt'

< (14 37) Juo? + (1 + 4) / 1702 d, (2.3)

T T
/ lu(®)IP de < lluolPios + / 1AL Fo))2 dt. (2.4)
0 0
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Setting f(t) = dg(t)/dt in (2.1) one obtains the Cauchy problem in the
form
du dg
A —
at T A

An analogous proposition holds for the problem (2.5).

0<t<T; u(0) = uyp. (2.5)

Lemma 2.2. The solution of the problem (2.5) satisfies a priori estimates:

/ lu(®)||4 dt+// ut®) = u()|7 t_t,|2 O 4y ar
5 5 T llg(t) — g("II? ’
g(ﬂ+4ﬂ){||uo|| +/0/0 —|t_t,|2 dt dt
Tn 1 )

[ G latolP ar, (26)
T T
/ ||U(t)||2dt5||Uo—g(0)||,24—1+/ lg()I? dt. (2.7)
0 0

Example 2.1. Let us consider the initial-boundary value problem for one—
dimensional heat transfer equation

% = a%(k( ) g“) + flx,t), (1) € Qr=(0,1) x (0,T),(2.8)

u(0,t) = u(1,t) =0, u(z,0) = up(z).
The problem (2.8) can be represented in the form (2.1), setting H = L3(0,1)
and Av = —%(k(m) g—;). If k € C'[0,1] and k(z) > ko > 0 the operator A

maps the set D(A) =W.4 (0,1) N W3(0,1) C L2(0,1) on Ly(0,1). The inverse
operator A1 is

’

Aly(g) = —/OI k(i,) /0 o(z") da' da’ (2.9)

(L) (L) ([ ] enwras),

The following inequalities hold (see [6])

1
1 ol o) < I0lFs = [ 4@ @) do < ca [olBig 0
0

v €Wy (0,1),

cs llvllwz(o,1) < N4Vl Lo0,0) < eallvllwzo,1)s

v €W, (0,1) NW3(0,1), (2.10)
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In such a way, inequalities ( 2.2), (2.3) and (2.4) show the stability of the

problem (2.8) in spaces W2 (Qr), W;’1/2(QT) and Ly (Qr).

3. STRONG STABILITY OF OPERATOR-DIFFERENTIAL
SCHEMES

Along with (2.1) and (2.5) let us consider analogous Cauchy problems with
perturbed right hand side, initial condition and operator:

Cfl—;‘ +Aa=f@t), 0<t<T;  a(0)= o, (3.1)
and

di  ~_  dg(t) L

I + Ad = Tl 0<t<T, 4(0) = . (3.2)

We deal with the problem of estimating the perturbation of the solution

2(t) = a(t) — u(t)

with the values of perturbations of ug, A and f (or g). Let the perturbed
operators satisfy the analogous assumptions as the operator A:

A(t) = A(0), A= A" >JE, § = const > 0.

As the measure of perturbation of operator we shall use the positive constant
« in inequalities

||(f1~—A)v|| < afl A, (3.3)
[((A —NA)v,v)| < a(Av,v), (3.4)
|A= Av — o] < allv]]. (3.5)

From (2.1) and (3.1), (i.e. (2.5) and (3.2)), one obtains

%+AZ: (F) = f(8) = (A=), 0<t<T, 2(0)=itg—uo (3.6)
or
%Mzzw_(g_m, 0<t<T; 20)=io—u. (3.7)

Using lemmas 2.1 and 2.2 and conditions (2.3) — (2.5) we obtain the following
result.
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Theorem 3.1. The perturbation of the solution of the problem (2.1) satisfies
a priori estimates:

T
dz(t -
[ (1o + | Z2]) de < 2l - wol
0
T _ T _
44AIU@—f@Wﬁ+&f<Mﬂ§+AIUwWﬁ>,
if the condition (3.3) holds;
Tw O o
||z A dt + t’|2 dtdt’ < (24 157) |||do — uol|

+A|Mm—fmmlw+T§5@%W+Aﬁmwﬁ1ﬂﬂ,

if the condition (3.4) holds;

T T ~
/0 l2(®)I” dt < [ldo — uoll3— + 2/0 AT (F () = F@)I* dt

T
+20” <|lﬂo||i;_1 +/ IIAlf(t)IIZdt>,
0

if the condition (3.5) holds;
The perturbation of the solution of the problem (2.5) satisfies a priori esti-

mates:
T 2
() — 2@
/||z ||Adt+// |t_t,|2 dt dt’

SR (T—— ./ /'u ORI g

tl|2

+/TC+fL0u<> OWm+TiWMﬂ2

/ /T l19(t) |t_t/|2 O 4 ar +/ (% + %) g (t)I1? dt]},

if the condition (3.4) holds;

T

T
/0 2@ dt < 2]Jdo — uo — [§(0) — g(O)][I% -2 + 2/ 13(t) — g()|I* dt

0

T
+2a” (IIﬂo — 905 +/0 ||§(t)||2dt> ,
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if the condition (3.5) holds.

Ezample 3.1. Let as consider together with (2.8) a perturbed initial-boun-
dary value problem

ot 0 (- ;
5 = %(k(m) —)+ @, (@) €Qr=(0,1)x(0,7) (3.8)

a0,8) =a(l,6) =0,  d(z,0) = io().

®|Q‘J
2

We have Av = —-L (k:(a:) g—g) and Ay = -4 (l::(a:) g—;). In such a way

(A=A, 0) 0y = /01 (k(z) — k(2)) [v'(2)|? dz,
where from follows that the condition (3.4) is satisfied for
li(2) — ()] < ak(z).
Using (2.10) we get

(A= A)vlla0,1) < e = Fllcpo, 10" lzao, + I1E = Fllcgo,un 101 a0.1
< (11 = Bllcgoy + ¥ = K'llcro.n ) lollwzo,ny
< L (Ilk = Fllcgoy + IIF = lleo.n ) I4llzago,1) -

Consequently, if

lk(z) — k(@) <a; and  |k'(z) -k (2)| < az, (3.9)

then (3.3) holds with a = (aq + az)/cs.
It follows from (2.9) that

Hence, when inequalities (3.9) are satisfied, then (3.5) holds with a = ay (ko +
2|kl co,17)/ kg + 2a2/ko.
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4. STABILITY OF OPERATOR-DIFFERENCE SCHEMES

Analogous results hold for operator—difference schemes. Let Hp be a finite
dimensional Hilbert space, with inner product (-,-)s and norm || - ||5. Let Ap,
be a constant, self-adjoint, positive definite linear operator in Hy, i.e.

Ah(t) = Ah(O), Ay = A;(L > 6hE'h, dp, = const > 0,

where Ej, is the unit operator in Hp. We denote Hp, , where D = D} > 0,
the space with the following inner product and norm

(Y,v)p, = (DrY,v)n, yllpw = V(Dry,y)n-

Let w; be an uniform mesh on (0,7") with the step 7 = T/m, w; = w,U{0}
and @, = w; U{0,7}. We will use the standard notation of the theory of
difference schemes [1].

We consider the two—level weighted finite difference scheme

v+ Apv'? = o(t), tew; v(0) = v, (4.1)
where v(?) = o0+ (1—0)v = ov(t+7)+(1—0)v(t), 0 > (1+&)/2—1/(T||An]))
is the weight parameter, vy is a given element of Hj, ¢(t) is a given function
and v(t) is unknown function with values in Hj,. We also consider the finite
difference scheme

v + Aol = Yy, tEWT;

T

v(0) = vo, (4.2)

where ¢ (t) is a given mesh function with values in Hy,.
The following analogous of lemmas 2.1 and 2.2 hold.

Lemma 4.1. The solution of the finite difference scheme (4.1) satisfies a pri-
ori estimates:

!
P A+ S @) < c(||vo||?4h+7||Ahvo||i+r 3 ||<P(t)||i>,

tE€w, tews tews

Y b, 0y 3 RO=tOh

tE@, tEGD- t' €D, t'#L

<0 (lloll + 7ol + 7 3 o)1),

tEw,

P SO < C (Il + ol + 7S 145 O ).

tEwr
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Here we denoted S w(t) = @ + e, W) + @ )

tew,

Lemma 4.2. The solution of the finite difference scheme (4.2) satisfies a pri-
ori estimates:

' ' (@) — o)l
T @A, +T Y Y |_—t,|2h < 1 llvollf + 7 llwol %,

tEwr tEwr t' €, , t'#t

+,1_2221 Zl ||1/1(75|3f t,|2t, ||h+ Z( +_)||¢( )||%L}7

tE@r t' €@, , t'#L

P = I < 0l - SO+l + 7 S BOT)-

t€w, tEw,

Ezample 4.1. Let wy, be an uniform mesh in (0,1) with the step h = 1/n,
w, = wp U{0}, @p = wp U{0,1} and @y, = @ X @,. We approximate the
initial-boundary value problem (2.8) with the standard weighted difference
scheme

—( ‘7)) +f, z€Ewy, tEw;
te

v(0, ) = v(1, 1),

z (4.3)
Wr; v(z, 0) =uo(x), =€ wy.

Here a is some stencil functional of k, e.g. a(z) = k(z + h/2).
Let H}, be the set of functions defined on the mesh @y, which vanish in the
nodesz =0andz =1, (v, w), =h >, v(z)w(z)and Apw = —(aw,)z. The

TEWH
characteristics of the operator A; are well known [1, p. 120], in particular

Ap = A} > 8k Ep,. In such a way, the difference scheme (4.3) can be repre-
sented in the form of operator—difference scheme (4.1). The inverse operator
Al s

z—h
1 _
A w(x) = — Z:O a:’ Zhhw )
1—h h —1 ,z—h (44)
(Sa) (S (S 5 rwen)
z'=0 a(a: ) x’ ac” h
The following inequalities hold
ko l[walli, < llwll%, = [Vaws|li < ki llwallz, (4.5)

where |[w]|? =h Y w?(z), and

TEW,

k2 [lwasll < [[Anwllh < ks [lwasll; - (4.6)
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5. STRONG STABILITY OF OPERATOR-DIFFERENCE
SCHEMES

Along with (4.1) and (4.2) let us consider analogous finite difference schemes
with perturbed right hand sides, initial conditions and operators:

o + Aptl? = p(t), tew;

T

5(0) = @ (5.1)

and
O+ Apo D =4y, tewT;  5(0) = do. (5.2)

We deal with the problem of estimating the perturbation of the solution
z(t) = o(t) — v(t)

with perturbations of vy, Ay and ¢ (or ¥).
Let the perturbed operator satisfy the analogous assumptions as the oper-
ator Ap:

Ah(t) = Ah(O), Ah = A}; > ShE’h, gh = const > 0.

As the measure of perturbation of operator we shall use the positive constant
« in inequalities

I(An — Ap)wlln < allApwl|n, (5.3)
|((Ah — Ah)w, U))h| S (6] (Ahw, U))h, (54)
||A;1Ahw—w||h < al|lw||p. (5.5)

From (4.1) and (5.1), consequently (4.2) and (5.2), we obtain the following
difference schemes for the perturbation of the solution

2+ Ap2' 7 = (3(t) —(t)) — (Ap — Ap) 89, tew ; 2(0) =0 —vy (5.6)
and

ze 4 Ap2'? = (=) — (Ap — Ap) 3D, tew; 2(0) =dy —vo. (5.7)

T

The following analog of the theorem 3.1 holds.

Theorem 5.1. The perturbation of the solution of difference scheme (4.1)
satisfies a priori estimates:

!
T I Az@ll; +7 D lz@)ll7 < C{Ilﬁo —voll%, + 7 [l 4n (B0 — vo)l5

tewr tewr

+7 30 188 — e @I + o (loll, +7 Y I2)I7) }

tEw, tEwr



144 P.P. Matus, B.S. Jovanovié

if the condition (5.3) holds;

: N G ] !
PO, Y Y T < Ol —wli
tEw, tED, t/ Eor, t'F#L

7 llio = woll, +7 3 (¢

)= o0l + (il + 7 3 16O |
tEw,

tEwr

if the condition (5.4) holds;

SR <C

< {uﬁo—vouz_l+T||ﬁo—vo||‘z
teEw, "

+7 30 147 @0 — o) + a2 (ol +7 > 147" 5t >||h)}
tEwr

tCw,

if the condition (5.5) holds.

The perturbation of the solution of difference scheme (4.2) satisfies a priori
estimates:

S0, Y Y =z

|t——t’(|2)“h <C {Hﬁo — voll}
tew, teD, tEw,, AL 3
. 2 2N~ r ) — )] — () — )]
+T||U0_v0||Ah +7 Z Z |t_t,|2
tED, t €y, t'#L

29> (: +—)||w<> SO+ o [llﬁoll‘é

i 1 ~
ey 3 WOVOR s (L L k] )
t€w, t' €@, t't It | tew,

if the condition (5.4) holds;

N EOIESe {||170 = v = [H(0) = YOI+ + 7130 — voll?
tEwr

#7190~ 90l +o? (Il = SO +7 X W) |

tEwr tEw,

if the condition (5.5) holds.

Ezample 5.1. Let us consider, together with (4.3), a perturbed finite differ-
ence scheme

T

ﬁt:(aﬁ;‘”) +f, zcwn, tEews
S

(5.8)
o(z, 0) = to(x),

Tr € wp.
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Let us set Apw = — (aw,), and Apw = — (@w,),. From (4.5) follows

(An = Ap) w, )y = h Y (a(x) - a(@)) w; (z),

zEw;,
wherefrom we can see, that the condition (5.4) is satisfied when
a(x) — a(2)| < aa(a).
Using (4.6) we obtain

1(An = An) wlln < la = allew lweslln + llae = asllon |[wslln

1/, 1.
< = (la—alles + 5 lar = azlicn) [4nwlln

Ky
where || - ||¢,p is the mesh C—norm. In such a way, if
la(z) —a(z)| <ar 1 |éz(z) — ax(z)] < az, (5.9)

then (5.3) holds with a = a3 /k2 + a2/ (8 k2).
The condition (5.9) is also sufficient for the inequality (5.5). Using (4.4) we
obtain (5.5) with a = ay (ko + 2||az||c.n)/kE + 2 az/ke.
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OPERATORINIU-DIFERENCIALINIYU SCHEMUY
KOEFICIENTINIS STABILUMAS

P.P. MATUS, B.S. JOVANOVIC

Darbe tiriamas pirmosios eilés nestacionariy diferencialiniy lygéciu, apibrézty Hilberto erd-
vése, stabilumas pradinés salygos, laisvyju nariy ir operatoriaus koeficienty atzvilgiu. Sta-
bilumo iverciai irodomi integralinése laiko atzvilgiu normose. Analogiski rezultatai gauti ir
baigtiniy skirtumuy schemoms. Jrodyti stipraus stabilumo jverciai, kai modifikuojami lygties
operatorius ir pradiné salyga. Teoriniai rezultatai pritaikyti vienmaciam Silumos laidumo

uzdaviniui ir ji aproksimuojanciai baigtiniy skirtumy schemai.



