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ABSTRACT

This paper deals with the simulation of 3-D rotating flows based on the velocity-vorticity
formulation of the Navier-Stokes equations in cylindrical coordinates. The governing
equations are discretized by a finite difference method. The solution is advanced to a new
time level by a two-step process. In the first step, the vorticity at the new time level is
computed using the velocity at the previous time level. In the second step, the velocity at
the new time level is computed using the new vorticity. We discuss here the second part
which is by far the most time-consuming. The numerical problem is that of solving a
singular, large, sparse, over-determined linear system of equations, and the iterative
method CGLS is applied for this purpose. We discuss some of the mathematical and
numerical aspects of this procedure and report on the performance of our software on a
wide range of parallel computers.

1. INTRODUCTION

Rotating flows play an important role in nature as well as in industry. In
nature they are found, for example, in cyclones and tornados. In industry they
are used in combustion chambers to mix fuel and air, and in cyclone-separators
where the rotation contributes to the dissolution of phases of different density.
Rotating flows have a number of interesting characteristics, such as the ability
to maintain inertia waves and the propagation of vortex break-down.

The physical system considered in this paper is that of a cylinder of radius
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R and height H containing a fluid with kinematic viscosity v. A no-slip
boundary condition applies everywhere on the cylinder surface. The motion
of the fluid depends on the initial motion of the fluid and the motion of the
fluid on the boundary of the cylinder. Let D denote the interior of the cylinder
and 9D its boundary. A cylindrical coordinate system is placed in the cylinder
with origin at the center of the bottom surface. Thus the typical point of D
is (r,0,z), where 0 <r < R, 0<6<2rand 0 < z < H.

Our mathematical model consists of the Navier-Stokes equations in the
velocity-vorticity formulation,

%—j—}-Vx(rExﬁ) = Ri62><z><@ (1.1)
Vxi = &, (1.2)
V-9 = 0 1.3

for (r,6,z) € D, t > 0. Here R. = Rug/v, where ug is a problem-dependent
characteristic speed. The unknowns of the problem are the velocity vector
#(r,0,2,t) € R® and the vorticity vector &(r, 8, z,t) € R®. The components
of ¥ and & are denoted @ = (v,,vg,v,) = (U, V,W) and & = (w1,ws,ws),
respectively. It is assumed that ¢ (and hence & via (1.2) is known everywhere
in D for t = 0 and everywhere on 0D for ¢t > 0.

Our procedure for solving problem (1.1)-(1.3) is to advance the solution
from time level t,, to t,,1 in two steps: First, the vorticity vector @"*! is found
by solving (1.1) with given velocity vector #™. Then, the velocity vector #"+!
is found by solving the system (1.2)-(1.3) with given vorticity vector &"*1.
Since the second step has proven to be the most time consuming by far, we
henceforth confine our attention to that.

2. THE DISCRETE SYSTEM
Equations (1.2)-(1.3) in cylindrical coordinates are:

o) OV | oW

o Tog e — Y 21
%_ﬁffﬁa_z - (22)
a(gr)*%—g = rws. (2.4)

Viewing this system as an independent problem, the correct boundary condi-
tion is the specification of the normal component of the velocity vector on 9D.
(See [4]). Consequently, the tangential velocity component on 9D is part of
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the solution. Hence we have a possible conflict, since the boundary condition
for problem (1.1)-(1.3) also determines the tangential velocity component on
0D. Experience has shown that the following approach to discretizing the
Cauchy-Riemann equations is effective [5]:

e The correct tangential velocity component on 0D is used in the discretiza-
tion of (2.1).

e Difference equations arising from (2.2)-(2.4) are not used in those cases
where one or more grid points belong to 0D.

To discretize the cylinder we divide it into cells with vertices
(ri,0;,25) = (1Ar, jA, kAz)

fori =0,1,...,Ny,j=0,1,...,Ny—1,k=0,1,..., N3, where Ar = R/Ny,
Af = 2w /Ny, and Az = H/N3 . (See Fig. 1.)

Figure 1. A portion of the discretized cylinder.

The cell vertices define the grid that is used in the discretization of (2.1)-
(2.4). In introducing a notation for the unknown velocity components it is
necessary to distinguish between grid points off the center axis (i > 0) and
those on the axis (i = 0). In the first case the typical velocity components
are denoted (U, j k, Vi jk, Wi k). In the second case the radial and tangential
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components of the velocity vector are not defined. Here we express the velocity
vector in terms of Cartesian coordinates

67‘:0 = (U():VO:WO)
and discretize these by
Ur=0 = (Uo & Vo 1, Wo ), k=0,1,..., N3.

In the difference equations that involve grid points at r = 0 there is a need
for the components of the horizontal velocity in the directions 6 and 6+ /2.
These are expressed by

UO,j,k = Upg COSHJ‘ + Vo & sinéj,

gk = ‘/0 k COSHJ‘ — UO k sinéj,

where j =0,1,...,No — 1, k=0,1,..., N3. (See Fig. 2.)

3

Voik{Vy &
0;

Uo.j.k

b;

Uo

Figure 2. Horizontal velocity at ¢ = 0.

Space limitations prohibit a complete description of the difference equa-
tions here, (see [2] and [3] for details), but the basic ideas are the following:
Equation (2.1) is discretized on every cell by balanced finite difference approx-
imations that yield a truncation error of second order with respect to the step
sizes. To illustrate, the discretization of the first term in (2.1) with respect to
the cell in Fig. 3 is

ory) 1 (
or  4Ar
+(rU)iv1j+1.k — (Ui + (rU)ijrrr + (1U)ijr1k41 + (rU)i 1k}

rU)it156 + (rU)it1 k41 + (rU)it1j+1,6+1

where, for example, (rU);y1jk = Ti+1Uit1,k - Cells which touch the center
axis are 5-sided and require special treatment. Regarding equations (2.2)-
(2.4), each of these is discretized on just one of the cell surfaces. For example,
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(2.2) is discretized on the surface r = r; (see Fig. 3) as follows:

1 1 1
g {5 (Wi + Wijrrwn] = 5 Wi + Wi,j,k+1]}

T 1 1
A, {5 Vijgk+1 + Vijs1 k1] — 3 Vijk + Vz‘wm]}

.
= ZZ [(W1)igk + (W1)igk+1 + (@1)ig+1k41 + (W1)ig541k] -

(i+1,j+1,k+1)

(i,j+1k+1) (i+1,j,k+1)

(L,

(ij+1K) (i+1j,%)

(RN

Figure 3. A typical cell.

The total set of difference equations constitutes an overdetermined linear
algebraic system which, after an ordering of the unknowns and equations, can
be expressed in the matrix-vector form

Ax =b. (2.5)

Let N denote the number of grid points in the cylinder. The dimensions of
A, x and b are, respectively, m x n, n x 1 and m x 1, where m ~ 4N and
n & 3N. Our chosen orderings of unknowns and equations proceed upward
through the cylinder, level by level, producing a matrix A with the sparsity
pattern shown in Fig. 4. This matrix can be partitioned in a form involving
only four distinct blocks: A1, As, A3 and A4. Blocks A; and A4 appear only
at the ends of the main diagonal, while block rows consisting of Ay and Aj
are repeated between these.
An important property of A is that when N, is even then its null space

N(A) = {x € R"|Ax = 0}

has dimension Ny — 2. Further, for each of the values i = 2,3,..., N; —1 there
is a vector in null(A) with the nonzero components

_ 1, j+ k even,
Wik = { ~1, j+E odd.
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Figure 4. Sparsity pattern of the matrix A.

These vectors comprise an orthogonal basis of N(A).

Overdetermined systems are generally inconsistent; i.e., they have no solu-
tion. However, (2.5) is “almost” consistent in the sense that the minimum
least-squares error

e=min || b—Ax | . (2.6)
xER™
where ||y ||= (yTy)'/?, is at the level of the truncation errors in the dif-

ference approximations used above. This is a consequence of the fact that
problem (2.1)-(2.4) is itself consistent, being satisfied by the solution of prob-
lem (1.1)-(1.3).

To obtain a completely consistent algebraic problem we replace (2.5) by its
normal system,

AT Ax = AT, (2.7)

AT A is a symmetric semipositive definite matrix of order n. This system has
the solution set

S(A,b) = {x € R"x =X +y, y € N(A)},

where X is the unique solution of (2.7) orthogonal to N(A). It is easy to show
that || b— Ax ||= e for all x € S(A,b), where e is given by (2.6).

To obtain a well-formulated problem we need a criterion for selecting pre-
cisely one vector from S(A,b). An analysis, which we omit, shows that if x is
taken to be the grid values of a given, smooth velocity field (U, V, W), then the
component of x in N(A) goes to zero very rapidly as the grid is refined. On



130 L.K. Lundin, V.A. Barker, J.N. Sprensen

the basis of this observation we identify X as the physically relevant solution
of (2.7).

3. A CONJUGATE GRADIENT METHOD

The normal system (2.7) may be solved iteratively by the conjugate gradient
method, a procedure that has several formulations. The one adopted here,
CGLS ( [1]), is shown below. The floating-point operation counts are given
for each step:.

a)  pth =5k 4 g ) 9n FLOPs
b) gkt = Agplk+D) 32n FLOPs
c) Q41 = M% %n FLOPs
d) rD) = (k) g gD Sn FLOPs
e)  zt+D) = z® 4o p-tD)  9n FLOPs
f) skt1) = ATy (k+1) 32n FLOPs
g) 1 = kDT k4D 2n FLOPs
h) B = 1EH 1 FLOPs

The iterations are initialized by setting 8, = 0, p(") = 0, r(V) = b — Az(V)
and, with k = 0, executing steps f) and g).

Regarding the choice of the initial vector x(1), when the conjugate gradient
method is applied to (2.7) then the solution it finds is the vector in S(A4,b)
with the same null space component as x(1). Since we want to find the vector
in S(A,b) with no null space component, an obvious choice of initial vector is
x(1) = 0. Recall, however, that the computational problem under discussion
is part of a time-stepping procedure. Since the velocity at the new time level
will typically be close to the velocity at the previous time level, one would like
to use the previous velocity as x(1) in the new CGLS computation. Now this
is possible provided only that the velocity computed at the first time level
t = t; has no null space component.

4. PERFORMANCE

The procedure outlined above is the basis for a computer program that has
been run over a wide range of machines. For implementation details see [3].
As pointed out in [5], the rate of convergence of the CGSL iterations can be
significantly improved by equilibrating the rows of (2.5), a variant we denote
rCGLS. Further, another variant, rCGLS-1, is sometimes effective in reducing
communication costs of distributed computing. (See [3]).

For our experiments and simulations we have used the computers shown
in the table below. Figs. 5 and 6 show the parallel speedup achieved on a
number of computers. We have obtained the speed-ups by measuring for each
computer the elapsed wall-clock time, T),, spent performing 100 iterations of
rCGLS using n processors. The parallel speed-up is then computed as Ty /T,.
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In all experiments the problem size is (N, Ny, N,) = (63, 66, 129) leading to

a matrix with dimensions app. 1.5 - 108 x 2.0 - 20% and about 700 distinct

non-zeros. Calculations are done in single precision®.

Table 1.
Computer Short Name CPU’s Peak [MFLOP/s] T
Fujitsu VPP700 VPP 32 70400 1.00*
Cray T3E/450 T3E450 64 57600 2.75*
Cray T3E/300 T3E300 64 38400 3.67
NEC SX-4 NEC 16 35200 1.97*
SGI Origin 2000/250  02K250 64 32000 1.41*
Cray T3D/150 T3D 64 19200 6.73
IBM SP-2 SC/120 SP120 32 15360 4.08
SGT Origin 2000/195 O2K195 32 12480 2.68
Convex SPP-2000 SPP 16 11520 7.78
IBM SP-2 Thin/67 SPthin 32 8512 8.62*
SGI PC R8000 R8K 16 5760 5.84
IBM SP-2 Wide/67 SPwide 16 4256 8.57
SGI PC R4000 R4K 16 4000 11.26
Meiko CS-2 CS2 14 1400 22.67
SGI PC R10000 R10K 6 2328 23.90
CRAY T90 T90 1 1920 65.54
SUN HPC450 SUN 2 1000 45.67
CRAY C92A C90 1 960 29.02
HP 9000/180 HP 1 720 166.24
IBM SP-2 SC/135 SP135 1 540 49.10
CRAY Y-MP YMP 1 330 62.72
Pentium PRO/200 PC 1 200 370.76

Each of the timings is the fastest of rCGLS and rCGLS-1. T, in the table
is normalized to T,, on the fastest computer, the VPP-32. The actual FLOP-
rate obtained on this computer is 9012 MFLOP /s. Timings T,, obtained with
rCGLS-1 are marked with * in the table.

Since the maximum number of processors per computer varies from 6 to 64,
the results are shown in two plots: one with measurements with at most 16
processors and another with measurements with at least 16 processors.

Some comments:

e With SPthin the measurements on 8, 16 and 32 processors are with rCGLS-
1. For the NEC this is the case for 14 and 16 processors. With the NEC
there is no speed-up from 14 to 16 processors with rCGLS because the
work is too small compared with the time spent in the inner product com-
munication. With our largest test case, (N, Ny, N,) = (127,256, 193), the
speed-up on NEC-16 increases to 80% of the number of processors. With

1Single-precision on a Cray and NEC is equal to double precision on the other tested
computers.
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Figure 5. Parallel speed-up, at most 16 processors.
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Figure 6. Parallel speed-up, at least 16 processors.

this resolution the speed-up on the VPP-32 increases to from 76% to 86%
of the number of processors.

e R4K, R8K, O2K195 and O2K250 exhibit super-linear speed-up even with
this rather large system. This happens because each CPU has a much larger
cache than the other computers and because of the low storage requirement
for A. There is however no super-linear speed-up with our larger test cases.

e In the described test case the load-balance is only optimal with 2P proces-
sors. This explains why the speed-up of the NEC and the CS2?% at 12 and
14 processors is low.

e The speed-up of the IBM SP-2 (all three variants) is quite low. This may
be because the SP-2 nodes compute quite fast. The timings for 1 processor

2Tests are conducted with one CPU per node.
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vary with less than 1%, while the timings with 32 processors vary with more
than 20%. We therefore believe the relatively poor speed-up is also caused
by the fact that the inter-processor communication in our SP-2 experiments
is competing for the bandwidth of the inter-processor connection against
the communication between processors of other users.

e With T3D and T3E450 the speed-up from 32 to 64 processors is modest
and with O2K250 the same speed-up is poor. With 64 processors there
are only two levels per processor, and therefore not much computation
to overlap with the communication. This reveals a weakness of the chosen
parallelization strategy: with a massively parallel computer a large number
of levels is necessary to obtain a good speed-up. There us no speed-up curve
for the T3E300 because this machine does not have enough memory to run
the code on a single processor. The speed-up from 2 to 64 processors is
however 29.7 which is 92.7% of a perfect speed-up. Since the processors
of this computer operate at a lower clock than those of the T3E450, the
communication overhead is relatively smaller, which is why rCGLS-1 is not
faster on this machine.

It is common to measure the parallel scalability of an algorithm by measur-
ing the scaled speed-up. Scaled speed-up is obtained by increasing the number
of processors while keeping the amount of work per processor constant. With
a perfectly parallel algorithm such an experiment should produce timings that
are independent of the number of processors. An easy way to construct such
an experiment for our problem would be to assign a fixed number of k-levels
to each processor and then simply increase the vertical resolution along with
the number of processors. However, due to the special cases of our Cauchy-
Riemann equations at the first and last k-levels this approach would result in
an uneven amount of work per processor, making it difficult to analyze scaled
speed-up. We have therefore not pursued this.
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LYGIAGRETIEJI BESISUKANCIU SKYSCIU MODELIAVIMO
ALGORITMAI

L.K. LUNDIN, V.A. BARKER, J.N. SORENSEN

Darbe sprendziamas trimatis Navje-Stokso uzdavinys, kai lygtys formuluojamos cilindrinéje
koordinaciy sistemoje, o nezinomaisiais yra greicio komponentés ir sukurys. Diferenciali-
nés lygtys aproksimuojamos baigtiniy skirtumy metodu. Viena algoritmo zingsni sudaro
du etapai. Pirmajame etape panaudodami senas grei¢io komponenciy reikSmes apskaiciuo-
jame stikurio reiksme naujuoju laiko momentu. Antrajame etape apskai¢iuojamos naujos
grei¢io komponenciy reik§més. Straipsnyje didZziausias déemesys skiriamas antrajam etapui,
kadangi Sios algoritmo dalies realizacija reikalauja daugiausia skaiCiavimy. Sprendziama
perpildyta tiesiniy lygciy sistema, kurios matrica yra siguliari, reta ir didelés dimensijos.
Naudojamas CGLS iteracinis metodas. Aptariamas lygiagretusis algoritmas ir pateikiami
rezultatai skaic¢iavimo eksperimenty, kurie buvo atlikti su jvairaus tipo lygiagreciaisiais

kompiuteriais.



