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ABSTRACT

Conjugation problem about jointly separate flow of viscoelastic and viscous fluids in the
plane duct is considered. The results concerning of solvability of this problem are
presented. The implicit difference scheme for the conjugation problem is constructed. The
consistency conditions are approximated with the second order of approximation with
respect to spatial variable. The convergence of the suggested difference scheme is
investigated by method of energy inequalities.

INTRODUCTION

Conjugation problems arise in the study of many phenomena which take place
in the media with sharply differing physical characteristics [5; 10; 11]. Various
consistency conditions for desired functions are given on the interface of such
media. The questions concerning the existence of a unique solution and the
numerical methods for such problems are considered in the papers [3; 7; 8; 9].

The study of oil viscoelastic characteristics influence on the technological
processes of oil extraction is of great interest [1]. We consider a joint motion
of the different non-mixed fluids in the split and porous layers and we into ac-
count their viscoelastic characteristics. The motion of viscoelastic and viscous
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fluids in the plane horizontal split leaving out of the surface is described by
the one-dimensional hyperbolic equation and the heat equation supplemented
with integral-differential conditions on the interface of moving fluids.

1. DIFFERENTIAL PROBLEM

Let the rectangle @ = {(z,t) : 0<z <!, 0<t<T}, 0 < T < 400, be
separated by the straight line v = {(z,¢) : z=¢, 0< &<, 0 <t < T} into
two sub-domains Q") and Q.

In the domain Q") we consider the hyperbolic (with respect to function
uM(t,z) of independent variables ¢ € (0,7) and z € (0,&)) equation:

2uD  Gu)  §241)
0 + -

(1), (1) —
L =075 ot Bre

= fV(t,2). (1.1)
For the function u®(¢,z) in Q(® we consider the equation of parabolic type
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Here 6, p, p are positive constants. Equations (1.1), (1.2) are supplemented
by the initial conditions

lu =u(0,2) = up(z), =z €(0,0), (1.3)
duM(0,
=200 — @), e 0.9), (149
boundary conditions
u(t,0) = u(t,l) =0, te(0,T), (1.5)

and the following consistency conditions

(1.7)
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where u(t,z) = (uV(t, 1), (t,2) € QW, uP(t,3), (t,2) € Q?), wuo(z) =

= (@), 2 € (0,8), uP @), v € (&,).
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Let us introduce the following notation Ju(" (¢, ) fexp( ) Ot z)dt'.

For smooth functions equation (1.1) and the condltlons (1.3) are equivalent
to the following equation

~ OuM) b t
LWy = a% - %Ju(l) = TfO(t,z) + fexp (_5> W), (1.8)

Thus, the problem (1.1)-(1.7) is equivalent to the problem (1.2), (1.3), (1.5)
— (1.8).
Consider the problem (1.2), (1.3), (1.5)—(1.8) as the operator equation

Lu =F, (1.9)

where Lu = (Lu,lu,liu), Lu = (Z(l)u(l),ﬁ(z)u@)), F = (f(t,x),uo(x)),

f(t,z) = (TfO(t,z) + exp (—L) uV), fP)(t,z)). Here the domain of defi-
nition D(L) of the operator L consists of functions u(t, ), where u(¥ (¢, z) is

a twice continuously differentiable functions in a closure Q9 of the domain
QY (i = 1,2), and this functions satisfy the boundary conditions (1.5) and
consistency conditions (1.6), (1.7).
We denote B the Banach space, which is the closure of a subspace B with
respect to the norm
L2(0,¢) > (t)+

L2(Q®)

grad ju(l) ‘ ‘

fulls = sup (I®),000 + |
(1.10)

|

gradju ‘ ‘

|

grad u(2)‘ ‘

Lo(Q()

where B is determined by the set D(L) and the norm (1.10). Let # be the
Hilbert space L2(Q) x L2(0,1). Consider the operator L as an operator from
B to H with the domain of definition D(L).

The proof of solvability of the problem (1.1)—(1.7) for any F' € H is based
on the following energy inequality for operator L.

Theorem 1.1. For the operator L : B — H the following energy inequality
llullz < cllLully, (1.11)

holds for any function u € D(L) and a positive constant ¢ do not depend on
u.

The operator L as an operator from B to H admit a closure L [4] and the
following estimate is correct:

lulls < ¢|Tul,,, VueDD). (1.12)
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Solution of the operator equation Lu = F is the strong solution of the
problem (1.1)—(1.7).

Using averaging operators with variable step [2; 4] we can prove the follow-
ing statement.

Theorem 1.2. Suppose that f) € Ly(Q®P), ug € Lz(0,1), ugl) € L»(0,¢)

and jf(l) € L2(Q(1)); then there exists a unique strong solution u € B of the
problem (1.1) — (1.7) and the following estimate

t
||U||B<C<“jf(l)+9 exp <—5> Ugl)

(Q)H +ju 1.13
La(QW) H L2(Q®) luollz,(0,) (1.13)

holds, where c is a positive constant that do not depend on u.

2. DIFFERENCE SCHEME

We assume that the following conditions hold
7Ot x)eC (Q“)) , D (t,z)eC? (Q@) L i=1,2, uo(z)eC?(0,1). (2.1)

On the interval [0, T] let us introduce the uniform grid w, = {t; = j7, j =
1,2,...N; — 1, Ny = T'}. In the domains Q") and Q® we shall consider
the uniform grids w; = wip, X wr and ws = wap, X wr, respectively. Here
Oih, = {xi =ih1, 1=0,1,2,...Ny, Nihy =&}, Oopy = {Tpps =+ ihy, 0=
0,1,2,... N3, Naohy =1—¢&}. Let Wy, = wip, UWap,, W = Wh X wr.

We approximate the problem (1.1) — (1.7) on the grid w by the following
implicit difference scheme

0 T I
Oyiz + - (exp (5) - 1) Yit = Yize + 01, (4,2) € wi, (2.2)
1 1.
—Y2t = — Y23z + P2, (t,l’) € wa, (23)
P H
y1(t,0) =y2(t,1) =0, t€ws,, (2.4)
y(0>x) = Uo(l”), yt(O,ﬂf) = H1(1’)7 T € wh, (25)

yi(t, &) = y2(t,8), tew,

%fylf + 0,50 (yu — exp (—g) y1:(0) — ‘Pl) (2.6)

1_
Zpy2z—0,5h2(y2t—<ﬁ2), z=¢ tEws,
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where
2
(1 - %) ugl)(w) + % <8 g;gw) + f(l)(O,:v)> , TEwip, U{LY,
ﬂl(l’) = )
<£8 gzgw) + f(2)(t,56)> , T € Wop,,
t !
Jv=(Jv)(t,z) = 3 Texp (#) o(t',x), Jo=(Jo)(t+7a),
t'=r

(1)
1 (t, :U) = { (Jff(l)(;,(f)é) (tatme) iTwla P2 (t, .7;) = f2(t, :U), (t, .7:) Ewo Uf.

Here we also use non-indexed notation of the difference scheme theory [6]:

yl(tam)a T € wl, Ykx — Ykz
= t,.’lf = e ————————,
Yy y( ) { yz(t,l'), T € wo, Ykza hk
oyt + he) —yk(t, @) ~yk(t, ) —yr(t, = hy)
Yka = y  Ykz = )
hk hk
Ykt — Yki _ gt + 1) —yk(t, )
Ykt = ) Ykt = )
T T
vt ) —yp(t — 7, "N
ykfzy( ) z( ), Uk =yk(t+1,2), k=12

Note that consistency condition (1.7) is approximated taking into account
the requirement of the second order of approximation with respect to the
spatial variable.

3. CONVERGENCE OF THE DIFFERENCE SCHEME

On the grids wgp, (K =1,2) let us introduce the scalar product and the norms

(w,0)y,, = > ul@p@he, (wol,, = > ul@@h +u@ovh,
TEWKR, TEW1h,
||v||wkhk = (U7v)wkhk’ Hv”wwl = (Uav]wml'

Now let us study the convergence of the proposed difference scheme (2.2)
— (2.6). We write the equations for the error z = y — u, where y is the
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solution of the difference scheme (2.2) — (2.6), and u(¢, ) is the solution of
the differential problem (1.1) — (1.7),

0 T ~
Ozg + - (exp (5) — 1) 2t = Zzz 0, (t,2) € wy, (3.1)
L= 15 tv, (o) e (3.2)
—2t = —Zz , ,T) € wa, .
p t L Tx 2
z(t,0) = 2(t,1) =0, t€ wy, (3.3)
Z(va) = 07 Zt(ovx) = ¢(£E), T € Wp, (34)
~ T 1
Jzz+05h1 (ze—exp | —= ) 2:(0) ) = =2, —0,5heze+¢, z =&, t € w,. (3.5
1 ( t ( 9) t( )) " 22t (3.5)
Here
( ~ 0 T
u%lx) + 1 — Gui—tl) - (exp (5) — 1) ugl), (t,z) € wy,

1. ~
;U;(;) — Juél) + 0,5 (h1<p1 + hQ(pQ) y

= 20 (0 (7 o0 () 0) ). =,

aiz + 2 — _ut2 ) (t,:L’) € wa,

~ 1

defines the truncation error of the equations (1.1), (1.2) and the consistency
conditions (1.7), ¢(z) = uy(z) — ut(0,z) = O(r + h?) is the truncation error
of the second initial condition. Note that under the conditions (2.1) ¥(t,z) =
O(t + h?) when z # € and (t,£) = O(rh + h?), where h = max{hy, ha}.
Let us reduce a priori estimate for the error of method. First let us trans-
t'—(t+T)
f) and

summing the result with respect to nodes of the time grid ¢ from 7 to ¢, we

obtain
t .
Z T exp (#) 2 (t)

t'=r1

t
t'—(t+7) T .
—+7) - 1) t') = JZ5a + Jb.
+tZ:Texp< 0 >(exp(6) z(t") Zge + JU
Using the formula of summation by parts and taking into account the equal-

ity (exp (W))t - %exp <W> (exp (g) _ 1), we get the

following relation

form the equation (3.1). Multiplying both sides by gexp <

2zt = JZzg + JU + exp <—§> z:(0), (t,x) € wy. (3.6)
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Let us make the scalar product in wyp, of the equation (3.6) with 272, and
the scalar product in wap, of the equation (3.2) with 272, Summing the results
and taking into account the identity z = 0,5(z + z) + 0,572, we have

1 1
112 12 2 2 2
B2, + SR, + 77 (a2, + Sl )

= ||Z||3)1h1 + _||Z||3)2h2 + 2T (27 ‘]/Z\EI)

winy (3.7)
+27 (3, 2a0). + 27 (2, )

W2aho Wihq

~ t\ ~
+27(Z,%) wap, + 27 exp <—§> (7, zt(O))wlh1 .

Consider the expression 27 (Z, JJZzz,). Using the formula of summation by
parts and taking into account equalities

~

(Jv), = %ﬁ—k % (1 — exp (g)) fv, Ju=Jv— gexp <—t+T> v(7),

0

we get

202, P, = =0 (122, = I122)12,, )

T ~ o~
+26 (1 — exp (5)) ||ng@]|z,1h1 +27 (ZJZ@) -
2 t
—5exp <—%> 7 (2, 222 (7)) — 972||(sz)t]|31h1'

Similarly,

2 2 .

;7‘ (z, z@gg)w%2 = —;T||zgf]|wzh2 - 27 (ZZz)|x:§ .

Thus, we have obtained the following energy identity

~ 1. =~ T =~
1800, + I8, + 121, +26 (o0 (5) = 1) IR

Wik, 0 Wihy

1 2 .
7 (nztuilhl + el +e||<sz>t]|3lhl) + oz,

1 2N
= |lII2 +E”Z”2 + T2, +272 (sz——zx> (3.8)

Wih Wah
1 2 u

z=£
t+ 7

t\ . 2 ~
+27exp <—§> (z,zt(O))wlh1 — 5 expP (— 7 > 7'(,2',,2'@0(7))“%1

127 (3,00),,,,, +2r (B.0)

Wahy
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Taking into account the consistency condition (3.5), we get

(1 =
2772 (—zz — Jzz>
I

—7hy exp (—%) 2¢(0) — 7'31/})

:<0,5h1/2\2 - 0,5h12’2 + T20,5(h1 + hg)Z?
2=¢ (3.9)

z=¢£

Using the relation exp (3) — 1 > 0 and (3.9), from (3.8) we obtain the in-
equality

132 + 72 (nztuim N ||zt||i-o.s) <l
1hy 2hg

t\ o 2 t+7 R _
+27 exp <_§> (2, Zt(o))w;r;f —p &P <— 7 ) T (Z’ZW(T))wlhl (3.10)

127 (3, J0),,, +27 (3,0),,, + (3o,

where
1
1 = 121 e + Sl e + 172811,
(u,v) 05 = Y u(@)v(@)ha +05u(§)v(E)h,
1hy
TEW1R
— 2 —
(w,0) 05 = 3 wl@)o@hs +05u@v©hr, ol g00 = (0,0) 505,

TEW2hy

||’U||i;ho2,5 = (’U,’U)w;hoés .

Taking into account the Cauchy inequality and the relation ab < ea® + 41—Eb2,

€ > 0, we have

U\ -
srexp (=5 ) (a0, gas < derrllelP o
1

v a S (3.11)

e[l o0 + 5 12O o0,

2 t+ 71 —~ 482 9
e (<57 7 s, < Pty (3.12)
+ 220312012 o + =220 (7) |12
9 Hlwfos T 9ge, 1A Mlwin,
t
N 27 t'—(t+T)
27 (7, J¢)w1h1 =7 Z T exp (T) (z(t+ 7'),1/)(t'))wlh1

t=r (3.13)

¢
-
< 4T837||Z||i;r}?1.5 + 4T53T3“Zt”ij,?l'5 t a5 Z ||1/’(t’)||ilh1;

t'=t1
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PE ), <Aerrlellgos +Aor s + 5, (319
T

ZY)|o=e = | 0,5e57(hy + ho)2® + ————0° 3.15

rElens = (0357 4+ )| )

where € = const > 0, k = 1, 5.
Substituting the estimates (3.11) — (3.15) in (3.10), we obtain the following
recurrence inequality

=t +DIF < (1 +er) (IIZ( T+ T||¢||2+o s+ Tlldzally,,,

+1 Y T, + Tle@),,, + 73 (¢ 5))

t'=1

Hence we get a priori estimate for the error of method
ll2(tn + 7)IIF < M (Ilcbllf +1psall?,,

2 1 2
Z (nw ys, + 10O, + 9 (t,a)),

where M, c are positive constants.
Thus, we have proved the following statement.

(3.16)

Theorem 3.1. Under conditions (2.1) the solution of the difference scheme
(2.2) — (2.6) converges to the solution of differential problem (1.1) — (1.7)
with rate O(1 + h3/?) in the grid norm || - ||1, i.e. for the error z =y — u the
following estimate holds

lIz|li < colT + h3/2), co = const > 0.
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SUJUNGIMO UZDAVINYS, APRASANTIS BENDRA
KLAMPAUS IR KLAMPIAIELASTINGO SKYSCIU
TEKEJIMA PLOKSCIUOSE KANALUOSE

V.I. KORZYUK, S.V. LEMESHEVSKY, P.P. MATUS, V.N. SHALINA

Nagrinéjamos sujungimo salygos, kai lieCiasi klampus ir klampiaielastingas skysc¢iai. IStir-
tas diferencialinio uzdavinio iSsprendziamumas. Uzdavinys aproksimuojamas neisreikstine
baigtiniy skirtumuy schema. Suderinamumo salygos aproksimuojamos antrosios tikslumo
eilés diskreciuoju analogu. Energetiniy nelygybiy metodu irodomas baigtiniy skirtumuy

schemos sprendinio konvergavimas ir jvertinamas konvergavimo greitis.



