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ABSTRACT

It is investigated the system of kinetic equations describing the magnetization of a
medium consisting of single-domain particles. The system includes the nonlinear
Landay-Lifschitz equation. The local existence of solution and its uniqueness in spaces
C*(0,T; X), X denotes the Sobolev space, is proved.

1. INTRODUCTION AND STATEMENT OF MAIN RESULT

The dynamic Landay-Lifschitz equations [4] are often applied in the problems
of magnetizations. V1. Skakauskas in 1985 presented a new dynamic system of
simultaneous equations describing the magnetization of a medium composed
of single-domain particles [5]. There the nonlinear Landay-Lifschitz equation
defines the motion of an individual single-domain particle in the magnetic
field. There have been some solutions of the simple cases this problem [6].
Later the particular cases were studied in the various functional spaces [7;
3]. In [2] there was investigated the difference scheme applied to solve the
nonlinear system of equations.

The purpose of this paper is to prove the existence and uniqueness of solu-
tion in a small time interval for the system nonlinear simultaneous equations
in the general case.

We consider the boundary value problem of the system of equations

0
6_7;: = a'ux (uxv+uv), (1.1)
u = wg, fort=0, (1.2)
0
v = d’u+dw +a4—2, (1.3)

ox
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w = /a5udy, (1.4)

I
i ow;
Lz = Z(Z bija—:; + biwi), (1.5)
i=1 j=1 J
z = ¢, forxed, (1.6)

where
2

Lz = Z ”(93: (93: + Za,
3,j=1 =1
denotes an elliptic operator.

The motion of an individual single-domain particle in the magnetic field
is described by the Landay-Lifschitz equation (1.1), ug defines the initial
position of the particle. The equation (1.4) gives the magnetization of a
medium. The last two equations determine the interaction between magnetic
field of the medium and external magnetic field.

Here @ C R? is the bounded domain with boundary 9Q, z = (z1,z2)
is a point of Q U 0. vy is a point of the bounded domain I C R and
let @ = Q x 1. u(t,z,y), v(t,z,y), w(t,x), z(¢t,z) are unknown functions.

Note that v = (ug,u2,u3), v = (v1,v2,v3), w = (w1, ws,ws) are three-
dimensional vectors, while z is a scalar function. a'(t,z,y) is a given vec-
tor at = (a%,a%,a%) and a*(t,z y) k = 2,5 are given matrixes, namely,

={af;}3,_, fork =2,3,5and a* = {a} }”_1 Scalar functions bl] (t,z,y),
b(tmy) 1—1,2,3]—1 2 and p(t,x), a(t,z), a;(t, ), ay;(t,x), 4,5 = 1,2
and a vector ug = (0, z,y) are given data. The symbol x denotes the vector
product of two vectors. All functions in this paper are real.

It is assumed that the operator L is regular elliptic. It means that there
exist two numbers u1, 2 > 0 such that the inequality

2

(€ +8) <> it v)6& < (& + &)

i,j=1
holds for all £;,& € Rand forallz € Q, 0<t < T.
Let || ||gl)9, [ =0,1,2,...denote the usual norm of the Sobolev space W(Q)
and W} _(Q) is a Banach space with norm

l
[ully e 0 = sup llu()]15 %
yel

We define a Banach space C*(0,T; X) of k times continuously differentiable
functions in [0; 7] with values in a Banach space X and with finite norm

k

Y sup l?@)lx,

i—1 t€[0,T]
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where || || x denotes the norm in the space X.
As the main result we prove the following theorem.

Theorem 1.1. Let 90 C % and ¢ € C(0,T; W5/*(90)), ug € Wy (Q).

If a* € C(0,T; W3 (Q)), k = 1,5; ayj, 5,0 € C(0,T;CH(Q)), i,5 = 1,2;
bij, bi € C(0,T;W3()), i =1,2,3,j = 1,2 and the problem (1.5), (1.6)
has a unique solution in the space W3(Q) for each fized t < T, then there
exists To > 0 that the problem (1.1)-(1.6) for T < Ty has a unique solution

ue CH0,T; Wy (Q)),v € CO,T; W3 2(Q)),
w € CH(0,T; W3(Q)),2 € C(0,T; W5 ().

2. AUXILIARIES

Lemma 2.1. Suppose that the conditions of smoothness of given data are
satisfied. If u € C’(O,T;W;’SO(Q)) and the problem (1.5), (1.6) for each
0 < t < T has a unique solution in the space W3 (), then

v e C(0,T;Wae(Q)),w € CHO,T; WE(Q)), 2 € C(0,T; WH(Q))

and for all 0 <t <T

[0S 00 [0 @IS0 2SS < crllu@)IS o (2.1)

)

Here a constant ¢y is independent of functions u,v,w, z.

Proof. We will assume there is a number y such that
2 e (2 2 2
a5 ks 150, 11550 o 153, < 1 (2:2)

for k=12,5,4,57=1,2,3,for all 0 < ¢t < T and for almost all y € I.
By the Minkowski and Cauchy inequalities [8] from (1.4) it follows that

3

/
i < { [ (32 Gazclal 2MlulB ) dy}

T i,j=1

3
because [a®u| < 3 |a%;|*|ul*. Since © C R?, by Sobolev’s imbedding theo-

1,j=1
rem,

max|u] < czllull$, (2.3)
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for u € W3(Q) and
ullse < esllullsy (2.4)

for u € W3(Q), where the constants c;, ¢z do not depend on u [8].
Taking into account (2.2), (2.3) we get the estimate

lwll2,0 < 3pcomesI||ul|2,0.

Next, we have

2 3

ol < {10 (maxlad, D2l I o)
k= T

1 i,j=1

3 2
(D N3, 13 o (masx [u)®) /2] dy}

ij=1

This inequality combined with (2.2)—(2.4) gives us

[wall0 < ucamesI(2[lully + V2uqll20)-

Applying the Minkovski and Cauchy inequalities and using (2.2)—(2.4) we
evaluate

lweell20 < {271(c2 + 2%)IIuII% + 9capul[uge 2,0} mesI.
Now, estimates of w, w, and w,, imply the bound
2 2
lw(®) |5 < esllu(t)]|S, (2.5)

which is valid for all ¢ € [0,T] and for almost y € I. Here ¢4 is a constant
independent of v and w.

Let F denote the right-hand side of (1.5). We now will obtain the estimate
of F. Using the Cauchy inequality and (2.2)—(2.4) we bound

2
1 1 .
(Ibiwills'y)? < Gufullwil3o +2 > [ne3 (lwill4)? + llwis, 0] }oi = 1,2,3.

k=1
(2.6)
The other term of F' is bounded above as follows

1
(bijwiz; 115" < (max |bis )2 llwia, 113 0
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2
+2) {(max |bi; )|wia, o, [13.0 + bije, I ollwis, I o} = 1,2,3,5 = 1,2.
k=1

Because of (2.3), (2.4) the right-hand side is less than

2
1 . .
p2{callwia; 130+ 2> (Bllwie, o 3.0 + ch(llwia, [150)?) },i = 1,2,3,5 = 1,2,

k=1
(2.7)
Finally, combining (2.6), (2.7) we find that
3 2
1
(IFIS)? <92 3 S { A (lwin 13 o + lwill3 )
i=1 j=1
2
1 1
26303 Mwiasan |30 + lwia; 113.0) + 2633 (lwill5'g)? + b ([wis, I55)} -
k=1
Therefore
FIM < 3,(3¢2 + 4¢22 4N1/2 (2)
1F]l5.0 < 3u(3c; +4cses + c5) /7 lwlly o
This inequality combined with (2.5) for all 0 <t < T gives us
IF@)ISS < eslluld)1$, (2.8)

where ¢5 does not depend on u.

Hence for each fixed ¢ from [0, T'] the right-hand side of (1.5) is a function
from the space Wy (). Therefore by assumptions of Theorem the problem
(1.5), (1.6) has a unique solution in the space W3 (2) and for each 0 <t < T
the following inequality holds [1]

2@, < cal FOISG + e I1042

where the constant cg is independent of z.
Further, applying (2.8) we have

1201 < erllu®ISh + csllo @IS her (2.9)

for all t € [0,T).
Our next step is to estimate the function v. By the Cauchy inequality and
(2.2)-(2.4) we obtain

3

1/2
letullz < {3 (max fa )2l o}/ < Beapdlullz.0-
irj=1
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Similarly
2
It} o < con(ullh + e, 20), k= 1,2

and
1(0*t) 2z, |20 < 27p(er + 20§)|IUII§?32 + 9c1pl|uzzll20, k1 =1,2.

From the last three inequalities we conclude that

la*ull§ < 3u{(11 +3v/3)ex + 18c3} |Julls’,
The same inequality is true for the second term of right-hand side of (1.3) a®w.
It easy to verify that the third term of right-hand side of (1.3) is bounded
above as follows

(@)% < 20{(3V3 + 4vB)ea + 6B Hlel|

Now, from these estimates using (2.5), (2.9) we have
2 2
oI5 < esllu(®) 15 (2.10)
for all 0 < t < T and for almost all y € I. A constant cg depends only on
given data and the numbers u, cs, c3.
From (2.5), (2.9), (2.10) we get the estimates of Lemma 2.1. The continuity

of functions v, w, z with respect to ¢ follows from (2.1) and the properties of w.
[ ]

Lemma 2.2. Let ug € WQQSO(Q) and a',v € C(O,T;Wi’go(Q)). Then u €
c(0,T; WSSO(Q)) and for all0 <t <T

t
2
a1 o < Nluollse o + co / (lu(l5%.0)” (1 + llu(I$h o) dr. (2.11)
0

Here a constant cg does not depend on u.

Proof. 1In the space C(O,T;W;”SO(Q)) we consider the function A(t,u) =

atu x (ux v+v). It easy to prove that A(u,t) € C(0,T; WQQSO(Q)) Therefore
the problem (1.1), (1.2) is equivalent to the equation

u(t) =uo + [ A(r)dr.
/
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By Minkowski’s inequality

t
2
4O < 0O g+ [ ADlz0.0
0

+ Z | Ag, (T ||2 00,@ T Z | Agya, (T ||2 oo,Q] dr. (2.12)

k,l=1

We will estimate each norm separately.
Using the Cauchy inequality and (2.2)-(2.4) we bound

2 2
[All20 < V3u(1 + e llullSp) lullSallvll2.0-
For the norm of the first derivative we obtain

[ Ae 2.0 < V3Su{ (1 + eallullS) [l 1015

2 2 2
(1 + 26 [ull SIS R 1wy 2.0 + (L + eallull Sl allve, Iz}, & = 1,2,

The norm of the second derivative is bounded above as follows
2 2
1Az izl < VBeap{ea(ea + 1263) ([ull )10l + (2 + 6e3)[[ulls b llwlls

Sal

2 2 2
+ea(1+ el [ull S [0S luape 2.0 + eallullSy I¥

c2|uzyzll2,0llv] 2,Q

+(1 + eallull ) vz l2.0] } ki1 =1,2.

Now, the estimates of A, A,, and A, ,, imply that the integrand expression
in (2.12) for all 0 < ¢ < T and almost all y € I is less than

crollu( ISR ONSS (1 + lu@®)15),

where c¢1o does not depend on u and v.
Finally, taking into account (2.1), we get (2.11). B

Lemma 2.3. Under the assumptions of Theorem 1.1 there exists Ty > 0 that
for all T < Ty

max {||u(t)

2 2 2
Jmas {5 o 1O o Ol 12O} < ene - (213)

The constant ¢y is independent of u,v,w, z.
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Proof. Let

t
2
80 = loll e+ en [ (I )7 (14 )1 ) .
0

This implies

d
B e (0l o) (14 (DI o).

From the definition of 8 and (2.11) it follows that

IS o < B). (2.14)
Therefore

dp 2

— < (1+0) (2.15)
and in addition

Bo = B(0) = [[uoll{2, - (2.16)
The solution of the differential problem
d
d_f = cf*(1+0),
Bo = B(0)

is an increasing function which majorize the solution of the problem (2.15),
(2.16). Therefore there exists a number Ty > 0 such that the function §(¢) is
bounded in the interval [0,7] for all T' < Tp.

Now the statement of Lemma 2.3 follows from (2.14) and (2.1). B

3. PROOF OF THEOREM

In the space C(0,T; W;(?o (Q)) we define the operator

We will prove that B is a contractive operator. Let u', u? be two functions of
C(0,T; W35, (Q)), while v!,v? are the corresponding solutions of (2.3)(2.6).
Let n = u?> —u' and 8 = v? —v'. Then

B(u?) — B(u!) = /¢(T) dr, (3.1)
0
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where
Y = a'u® x (u? x v? +0%) —a'ut x (ut x o' + o)

=a'n x (u? x v® +v?) +a'u' x (n x 2 +u' x B+ B).

We obtain the estimate of ¢ similarly to the estimates of lemmas. Using
the Minkowski and Cauchy inequalities and applying (2.2)- (2.4) we have

[lla. < VBEu{ (L + el IS 101 Il

+eallo? IS Inll2e + (1 + el IS IBl2.0)] 1 150 -
The first derivatives of ¢ we bound

o,z < VBER{ (L + eallu?l| SIS L (115 + 182, ]l2.0)

+[eal SRS + (L + callut SIS R] (1t |15 + llul, ll20)

2 (2) 211(2)
5.0 >0

2 2
+leallu?, ll2.llo? 158 + (1 + el S 102, 2] 115 + c2 (e ll20llv

2 2 2
IS a02, 2. + llub, 2@ llBIS S + (L + callut |1 Bae |z}, & = 1,2.

The second derivatives of ¢ are estimated as follows

2
[ 12,0 < VBean{ (1 + e[ [ 1071 [(e2 + 26 InlIS2 + 1 [1nese12.0]

2 2 2

+ea[InlIS R0 + (1 + [ IS IBISE] [(e2 + 263 [ 18 + eallul,,, ll2.0]
2 2 2 2 2

4 [(L+ [ | S [ IS IS + (2eallnl Sy 10?150+ (14 2ea [ IS 1B1150)

2 2 2 2 2
[l 155] + eallnllS [(callu? Nl + 2esllu|S) 15 + (1 + el [u?]5)

1 2 2 (2)

102, o 2] Feallut 15 [(callnene 2.0+ 2 NS 10 1S g +ea S 102 4 2.0

+Heallul, 2. + 23 ISDNBIS S + (L +eallut ) 1 Bera l22] }, kol = 1,2,

These estimates are valid for all 0 < ¢ < T and for almost all y € I. The
last two inequalities combined with (2.11) gives us

@IS < cialln@)ISy + csll BRI, (3.2)

for all 0 <t < T and for almost all y € I. Here ¢;2,c13 do not depend on 7
and 3. From the equation (2.3) and the inequality (2.10) we obtain

IBONSY < eraln(®I
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for all 0 <t < T and for almost all y € I. Therefore from here and (3.2) we
get the estimate

OIS o < ewslin@IIS o (3.3)

for all 0 < t < T with the constant c;5 independent of 5. Since n = u? — u?,

we conclude from (3.1) and (3.3) that

t
IB(u?) - Buh)[|$ o < c1s / [ — ut (1) |5 d7
0

for all 0 < t < T and c¢15 does not depend on u', u2.

Thus for ¢t < 1/e15, B(u(t)) is the contractive operator in the space
C(O,T;Wi’go(Q)). Now the statement of Theorem follows from Lemmas
2.1, 2.2.
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NETIESINIO IMAGNETINIMO UZDAVINIO
ISSPRENDZIAMUMAS

P. KATAUSKIS

Nagrinéjama netiesiniy lygciy sistema, aprasanti medziagos, sudarytos i§ viendomeniy da-
leliy, imagnetinima. Matematinis modelis pasitlytas V. Skakausko 1973 m. Atskiros dalelés
judéjima magnetiniame lauke apibrézia netiesiné vektoriné Landay-LifSico lygtis. Medzia-
gos imagnetinimas aprasomas Maksvelo lygtimis. Tiriamoji lygciy sistema gauta ivedus
vektorinj gradienta. [rodyta lokalaus pagal laika sprendinio egzistencija ir vienatis erdvése
C(0, 79, X), ¢ia X — Sobolevo erdvés.

Teiginys pagrindziamas parodant, kad tam tikras operatorius erdvéje

C(0,T9 X) yra suspaudziantysis, kai laiko intervalas yra trumpas. Irodymas paremtas
aprioriniais jverciais, taikomos jdéjimo teoremos, todél gautas rezultatas teisingas, kai nag-

rinéjama aprézta sritis plok§tumoje.



