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ABSTRACT

Most explicit finite difference schemes have very stringent stability criterion. In 1982,
Charlie Dey [1] developed a novel method and solved several partial differential equations
representing models of fluid flow. (He was then only 10 years old). Recent mathematical
analysis shows that this relatively simple method is quite powerful to solve any flow model
if it has a steady-state solution using a stability criterion which is a lot less stringent than
most explicit finite difference schemes generally applied in Computational Fluid Dynamics

2.

1. INTRODUCTION

Explicit difference algorithms are some of the simplest extrapolation tech-
niques to solve partial differential equations. Several of these techniques are
described in [2]. Lax’s method, Leap-frog scheme, Lax-Wendroff algorithm,
MacCormack Method, Beam and Warming’s upwind method are quite fa-
mous. Charlie’s algorithm is possibly simpler than all of them. Yet it is quite
powerful. In comparison with other extrapolation methods, it demonstrates
far better stability property.

In [1] the non-vectorized form of Charlie’s algorithm has been discussed. In
’94, this algorithm has been represented in a vectorized form [3] and several
nonlinear differential equations having steady-state solutions were solved.

We will study the algorithm of this numerical technique, analyze its stability
and study solutions of several partial differential equations.
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2. THE ALGORITHM

Let us consider an initial-value problem:

du
= fw), (2.1)

U(to) = Up.
Euler’s forward extrapolation formula is:
Un+1 = Un + hf(Un)y UO = Up, (22)

where h is the time-step and U, is the grid function corresponding to u(t,).
Charlie used (2.2) and added to that a convex corrector. Thus his new algo-
rithm for solving (2.1) numerically is:

Compute:

Step#l U =U, + hf(Uy), (2.3)
Step#2 Upy1 = (1 —)U ++{Un + hf(U)}, (2.4)

where 0 < v < 1. The first step is called the predictor, which is the same as
Euler’s forward extrapolation formula. The second step is Charlie’s corrector.
It may be observed that if v = %, this algorithm reduces to Second Order
Runge-Kutta Method. Let us consider the stability analysis. Let

du/dt = Au, u(to) = uo. (2.5)

The predictor is:
U = U, + AU, (2.6)

the corrector is:
Uni1 = (1 =) +{Un ++hU}. (2.7)

Combining them we get:
Un+1 = O'Un, (28)
where

o =1+ Mh+yA2R2. (2.9)
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The method is strictly stable if
lo] < 1. (2.10)

An Example: Let A = —80. Then o = 1 — 80h + v(—80)?h%. If h = 0.025,
|o] = 0.6 < 1, thus the method is stable.

If h =0.07, |o] = 1.46 > 1, the method is unstable. If h = 0.1, |o| = 0.6 <
1, the method is stable again. This feature of Charlie’s algorithm, made it
interesting.
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Figure 1. The stability curve o(z).

In fig. 1, with x = A\h, the stability curve, o(z) = 1 + z + y2? is drawn with
v = 0.1. Here stability is given by —2.7639 < z < 0 and —10 <z < —7.2361.
The method is unstable for: —7.2361 < z < —2.7639. If we set v = 0, stability
is given by —2 < < 0. Thus Charlie’s convex corrector has improved the
stability property of (2.3) considerably. We will prove the following theorem:

Theorem 2.1. If Charlie’s Predictor/Corrector is strictly stable, it must con-
verge to the steady-state solution.

Proof. The initial-value model (2.1), has a solution if f(u) satisfies the Lip-
schitz condition on [tp,00). Let D be the range of f(u). Then, the criterion
for the existence of solution is: Yv,w € D,

|f(v) = flw)] £ Lv—wl. (2.11)
Let u = U* € D be the steady-state solution. Then f(U*) = 0. Obviously,

U= =yU" +7{U" +hf(U")}, (2.12)
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subtracting (2.12) from (2.4) we get

|Uny1 —U*| < (1 —7)@— U*| +7|U, = U*| +7h|f(§7) — f(U")]
<A =NU = U*|+~|Up = U*| +yhL|U — U*|
= (1 =y +~hD)|U = U*| +v|Un — U*|
Now

U -U*| <|U,—=U*|+h|f(Us) - f(U*)|
< (14 hL)|U, —U*|.

Combining these two inequalities we get:
Uns1 = U*| < (L+ AL +~h*L?)|U, — U™

Let E,, = |U, — U*|, 0 = (1 + hL + vh%L?), then E,; < 0E, < 0’E, | <

... < 0"Ey, where Ey = |U; — U*| is the error at ¢ = t;. If the method is

strictly stable o < 1 and li_>m E, = 0. Thus if this method is strictly stable,
n o0

it must be able to solve a steady-state model. B
In [1] several stability contours were drawn in the complex plane with z =

Ah, where A is complex. These also exhibit better stability properties of
Charlie’s predictor-corrector.

3. APPLICATIONS TO PARTIAL DIFFERENTIAL EQUA-
TIONS

3.1. Linear Inviscid Burgers’ Equation

u+cu, =0, 0<ax<l1, t>0, (3.1)
u(z,0) = f(z),
u(0,t) = p(t).

Let us approximate u; by a forward difference formula and u, by a backward
difference formula. Then Charlie’s algorithm is

U =Ur —a(UP—UP,) j=1,2,...J, (3.2)
Ut = (1= )0+ {0 —a (0,-054) )} i=12,...7,33)
where U = U(x;, ty) is the value of the grid-function U at x = x; and t = tn,

7y is the convex parameter and a = cAt/Az.
Fourier Stability Analysis: Let

U = ¢"eiPin, (3.4)
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Substituting « in the predictor we get U= PQ where P = (it Q =
(1 — a 4+ ae~%"), Substituting this in the corrector and simplifying, we get
¢ =1—a(l—exp(—ifh)) +va2 (1 —exp(—iBh))”. If we choose v = 0.25,
¢ = (1—0.50(1 — exp(—iBh))>. For stability |¢| < 1. This gives 0 < 0.5a(1+
cos Bh) < (1 + cos Bh) which is satisfied if:

0<a<2 or At<2Az/c

If v =0, At < Ax/c. Thus Charlie’s algorithm has increased the time-steps
by a factor of 2. These results have been verified computationally.

3.2. Heat Conduction Equation

Up = Vg, 0<z<1l, 0<t<T,
u(z,0) = f(z), =z e€l0,1],
w(0,t) = g1(t), wu(l,t)=g2(t), 0<t<T.

Let u; be approximated by a forward difference formula and u,, be approx-
imated by the central difference formula. Charlie’s formula for the finite
difference solution of the heat conduction equation is:

U=Ur+bUp, —2Ur+UM)) j=1,2,...0
UJTH_I:(].—’)/)Uj‘f"y(U]n‘f‘b(ﬁJJrl_20]4_0]71)) j:1)27""])

where b = vAt/Az?. Following the same procedure as before, one can find,
¢ = 1460+ +6% where § = —4bsin®(8h/2). If we choose v = 1/(4b), then
the stability criterion: |[¢| < 1 reduces to 0 < bsin® 3h < 2. Hence the
largest value of b is 2. Hence Atmax = 2(Az)?/v. If v = 0, Atmax =
(Az)?/(2v). Charlie’s algorithm has increased the conventional Atmax used
by most explicit finite difference schemes by a factor of 4. This has also been
verified by computer experimentation.

3.3. Linear Burgers’ Equation

Ut + ClUy = VUgy,
u(z,0) = f(z), = €]0,1],
u(0,t) = g1(t) u(1,t) = go2(t) ¢t € [0, T.

Let u; be approximated by a forward difference operator and u, and u,, be
approximated by central differences. Then Charlie’s algorithm is:

Ui = Up=05aUf, —U ) +b (U, —207 +UM,), j=1,2,...0
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U;H_l = (I—W)Uj—l—'y{U}‘—O.Sa (Uj+1—Uj_1)
+b (UjJr1 —20; +Uj_1)}, i=1,2,...J,

where 0 < v < 1, a = ¢At/Az and b = vAt/Az?. For the stability analysis,
following the same procedure as before, we get:

(=14+2+~v22

where z = 2b(—1 + cos Bh) — iasin Sh. Here z being complex, the stability
contours given in [1] should be used to compute At from a given Az when vy
is given.

CONVEX CORRECTOR y = 0.175
CRBO000EEeay, Ivl/-l

Figure 2. The stability contours.

Let us consider v = 0.175 (fig. 2). Then for stability |Re z| < 5.5, giving
Atmax = 1.38Az%/v. This is significantly larger in comparison with the
conventional Atmax < Az?/(2v).

4. NONLINEAR MODELS

For nonlinear models, one must do a local linearization. However if the model
is mildly nonlinear as in the case of Burgers’ Equation or Euler’s Equation
or Navier-Stokes equation and we are primarily interested in the steady-state
solution, then Charlie’s algorithm is fruitful. In this regard, the Shock-Tube
problem is very convenient. Let us discuss this now. The model is described
by:

w + F(w), =0,

where w = (p pu e)l, Flw) = (a b ¢, a = pu, b = (y — 1)e +
(3—7)/2)pu?, e = veu — ((y —1)/2) pu. p is density, u is velocity, p is
pressure, e is total energy per unit volume, given by e = pe + "72, € is internal
energy per unit mass. For a perfect gas, p is given by p = (y — 1)(e — pu?/2),
v=14.



76 S.K. Dey

Let two gases, separated by a diaphragm be in equilibrium in a tube. Let
their densities be unequal. If the diaphragm is impulsively broken, the gas
molecules start mixing. This phenomenon is often referred to as the shock-
tube problem. Here the following initial conditions are considered: p = 1,
u=0,e=1/(y=1)for0<z<19and p=0.1,u=0,e=0.1/(y —1) for
1.9 < x < 5. The gas molecules start mixing and start settling down.
Charlie’s algorithm, applied in this case, consists of the following steps:

Wy =w+ (At/20z) (F ) — FFYyy)

Wt = (1= By, + 6 {w;? + (At)200) (ﬁj,l - ﬁj+1)} .

Here 6 is the convex parameter. For the first equation (conservation of mass)
6 = 0.15, for the equation of motion (conservation of momentum) 6 = 0.25,
for the equation of energy 6 = 0.5. Also, Az = 0.0125, and At = 0.008.

These give CFL No. = 1.5. In fig. 3, fig. 4 and fig. 5, density, pressure

Shock Tube
Axe0.0128
410,008

Density

Ocnsity Distritution

Figure 3. The density distribution.

Shock Tube
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Pressure

Pressure Distribution

Figure 4. The pressure distribution.

and velocity distributions are shown. These are standard results which match
perfectly with the findings of the others [4,5].
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Figure 5. The velocity distribution.

5. FLUX-VECTOR SPLITTING

An interesting model (theoretical) is chosen here where in the flow field there
is an interaction between a moving shock and a decaying expansion shock.
The model is described by: u; + uu, = vug,, at t =0, u = 1if 0 < z <
0.05, v = —0.5 for 0.05 < z < 0.25, v = 0.5, if 0.25 < = < 0.375, else
u = —0.5. Here Charlie’s algorithm is combined with Flux-Vector splitting
(at the suggestion of Warming [6]). Thus

Ui = U} + a{(Uy = [UF]) Us + 207 [UF| = (UF + UL ]) UF 1}

+b (U} =207 + U} )
U;H_l =(1 —’)/)Uj +’)/(U]n +a{(Uj+1 — ‘Uj+1D 0j+1 +20j ‘03‘

— (Uj—l + ‘Uj—l‘) Uj—l} +b (Uj+1 - QUj + Uj—l) )

where a = —0.25At/Ax, b= v/At/Az?. The results are shown in fig. 6.

Clearly we see that the incoming shock, overcomes the expansion shock
and moves on. Here At = 0.0035, Az = 0.0025, v = 0.125 and v = 0.0001.
There are 400 points on the z-axis and 1000 time-steps are considered for
computation.

6. CONCLUSION

This possibly one of the simplest algorithms to solve partial differential equa-
tions. It requires no matrix computation. It is a self-starter and in comparison
with other similar methods which may be found in the reference [2], it exhibits
far better stability property. Furthermore, if this algorithm is combined with
flux-vector splitting, the shocks become crisp. Thus it may be safely concluded
that the present algorithm could be quite useful to solve partial differential
equations numerically.
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Figure 6. An interaction between a moving shock and a decaying expansion
shock.
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NAUJA ISREIKSTINE BAIGTINIU SKIRTUMU SCHEMA
DIFERENCIALINIU LYGCIU DALINEMIS ISVESTINEMIS
SPRENDIMUI

S.K. DEY

Daugelio iSreik§tyju baigtiniy skirtumuy schemuy stabilumo reikalavimai yra labai griezti.
Darbe nagrinéjamas metodas, kuris jau buvo panaudotas sprendziant skys¢iy tekéjimo uz-
davinius. Parodyta, kad skaitinio algoritmo realizacija yra ekonomiska ir §is metodas gali
biti naudojamas sprendziant placia nestacionariy uzdaviniy klase. Irodyta, kad naujosios
isreikstinés baigtiniy skirtumuy schemos stabilumo salyga yra silpnesné nei daugelio kity
populiariy i§reikstiniy skirtumy schemuy. Pateikti skaic¢iavimo eksperimento rezultatai, kai

sprendziama Burgerso lygtis ir Eulerio lygciy sistema.



