
Mathematical Modelling and Analysis Publisher: Taylor&Francis and VGTU

Volume 20 Number 2, March 2015, 232–260 http://www.tandfonline.com/TMMA

http://dx.doi.org/10.3846/13926292.2015.1021395 ISSN: 1392-6292

c©Vilnius Gediminas Technical University, 2015 eISSN: 1648-3510

Numerical Solution of the Time-Dependent
Navier–Stokes Equation for Variable
Density–Variable Viscosity. Part I

Owe Axelssonc,a, Xin Heb and Maya Neytchevaa

aDepartment of Information Technology, Uppsala University

Box 337, 751 05 Uppsala, Sweden
bDelft Institute of Applied Mathematics, Delft University of Technology

2628CD Delft, The Netherlands
cInstitute of Geonics, AVCR, Ostrava

Studentska 1768, 708 00 Ostrava-Poruba, Czech Republic

E-mail: owe.axelsson@it.uu.se

E-mail(corresp.): X.He-1@tudelft.nl

E-mail: maya.neytcheva@it.uu.se

Received June 3, 2014; revised February 1, 2015; published online March 15, 2015

Abstract. We consider methods for the numerical simulations of variable density
incompressible fluids, modelled by the Navier–Stokes equations. Variable density
problems arise, for instance, in interfaces between fluids of different densities in mul-
tiphase flows such as appearing in porous media problems. We show that by solving
the Navier–Stokes equation for the momentum variable instead of the velocity the
corresponding saddle point problem, arising at each time step, no special treatment
of the pressure variable is required and leads to an efficient preconditioning of the
arising block matrix. This study consists of two parts, of which this paper constitutes
Part I. Here we present the algorithm, compare it with a broadly used projection-
type method and illustrate some advantages and disadvantages of both techniques
via analysis and numerical experiments. In addition we also include test results for a
method, based on coupling of the Navier–Stokes equations with a phase-field model,
where the variable density function is handled in a different way.

The theory including stability bounds and a second order splitting method is dealt
with in Part II of the study.

Keywords: Navier–Stokes equations, variable density, variable viscosity, operator splitting

methods, regularization, phase-field model, finite elements, iterative methods, precondition-

ing.

AMS Subject Classification: 65F10; 65F08; 65N30.

http://www.tandfonline.com/TMMA
http://dx.doi.org/10.3846/13926292.2015.1021395
mailto:owe.axelsson@it.uu.se
mailto:X.He-1@tudelft.nl
mailto:maya.neytcheva@it.uu.se

Numerical Solution of the Time-Dependent Navier–Stokes Equation 233

1 Introduction

Variable density problems arise in many complex fluid flow processes of current
interest, and have been studied intensively via numerical simulations. As an
example, which ranges over a large number of difficulties, we mention the gen-
eral circulation model, dealing with the coupled water–atmosphere dynamics.
In such a model, both the density and the viscosity of the water and the air are
varying. The water is volume-wise incompressible while the air is compressible
and the processes are influenced by numerous other factors, e.g. temperature,
salinity, moisture etc., leading to a system where high instabilities, such as
turbulence, occur.

Important variable density problems arise also in laminar flows and the
work, presented in this article, deals primarily with the numerical solution
of such models. Examples of the latter type are the variable density ground
water flow phenomena, which have been intensively studied in the last decades.
There, density-driven flow occurs and the effect of variable density becomes
significant, in particular when a fluid of high density overlays a fluid of lower
density (cf., e.g., [41]). Density-driven flows are of fundamental importance
also when solving transport problems in porous media (see, e.g., [13]).

Another class of variable density problems arise in modelling of the interac-
tion of several phases, for example droplet impact onto a solid or liquid surface,
accurate tracking of interface surfaces between fluids of different density in mul-
tiphase flow problems, etc.

Due to its high complexity and nonlinearity, the underlying coupled system
of partial differential equations is usually solved using some form of operator
splitting scheme, see e.g. [34].

The research on numerical schemes for approximating viscous incompress-
ible flow problems has been and is very active since the 1960s, when compu-
tational fluid dynamics was launched. The literature is immense and nearly
inexhaustible. Without the ambition to present a comprehensive view on the
numerical schemes for time-dependent NS problems and the solution of the
arising algebraic systems we mention some particularly often used approaches,
emphacising the most important factors that usually steer the choice of one or
another numerical technique, namely, accuracy of the approximation, stability
of the time discretization and the computational burden of the corresponding
numerical solution procedure.

Numerical schemes for time-dependent NS equations are usually based on
a semi-discretization in time, followed by a spatial discretization at each time
step, e.g. the finite element method used in this paper. Typically, the methods
are classified as fully implicit, semi-implicit and explicit/implicit, with various
specific details and interpretations.

The fully implicit methods have as main advantages the unconditional sta-
bility and the exact fulfillment of the incompressibility constraint. At the same
time these methods are computationally most expensive. Using a backward
Euler differencing for the time derivative yields a nonlinear problem that has
to be solved at each time step. To this end one can use either the Newton iter-
ation or the Oseen iteration and, if the time step is not too large, the solution

Math. Model. Anal., 20(2):232–260, 2015.

234 O. Axelsson, X. He and M. Neytcheva

in the previous time step should be a good initial guess for the next nonlinear
iteration, speeding up the nonlinear converge. The backward Euler method
provides only first order accuracy in time. To achieve a higher order accuracy
in time one can use the Crank-Nicholson method. For a detailed theoretical
assessment of that method in the context of constant density nonstationary
NS we refer to [27], where second order error estimates locally in time are
proven. As the method is only A-stable, it achieves a second order accuracy,
but instabilities may not be sufficiently damped. As a way to overcome this,
in [27] the Crank–Nicolson method is combined with a sequence of implicit
Euler steps.

The straightforward use of forward Euler differencing for the time deriva-
tive yields an explicit time discretization scheme that is computationally much
cheaper than the implicit methods. However, due to severe restrictions on the
time step in order to satisfy the stability constrains, it is hardly ever used in
pure form the present context. More to that, it is only first order accurate
in time and, in addition, the incompressibility constraint cannot be satisfied
exactly. Still, the ease of computing steadily attracts attention to the explicit
schemes. As an example, a combination of implicit and explicit Euler schemes
has been proposed in [26] that utilizes the implicit scheme in time for the linear
term in the momentum equation and the explicit scheme in time for the non-
linear term. The method handles both smooth and discontinuous initial data,
it is shown to be stable, and under certain condition on the stability constant,
the method achieves the optimal error estimates.

The class of the semi-implicit methods is most diverse. The idea is to reduce
the computational complexity at each time step by linearizing the nonlinear
problem using the ”frozen coefficient” approach in a similar way as is done
in the Oseen problem. The method, utilized in this paper is of semi-implicit
character. The idea to treat parts of the NS system using different numeri-
cal schemes has been exploited in many studies, leading to a large diversity
of approximation techniques, among which are the fractional-step methods or
fractional-step projection methods. These originate in the classical works of
Chorin [11] and Temam [42] and through the years have been further developed
in various directions: (i) fractional-step (or splitting methods) for the evolution-
ary equation, cf., e.g. [8] and the references therein; (ii) various projection-type
methods, such as pressure projection methods [21, 24, 38], velocity-correction
projection methods [25], scalar and vector penalty-projection methods [2]. The
main idea of the projection methods is first to compute a velocity field without
taking into account incompressibility, and then perform a pressure correction,
which is a projection back to the subspace of solenoidal (divergence-free) vec-
tor fields. In those schemes, both types of time discretizations, explicit and
implicit have been utilized.

As an example of a method of type (i), we refer to the so-called fractional-
step-θ method that is a scheme of second order accuracy in time and is strongly
A-stable with small dissipation. The method originates in [18] for convection-
diffusion problems and is further developed and used for time-dependent flows.
The method is second order accurate in time. When implementing it, the
convection operator is treated separately from the diffusion operator, and the

Numerical Solution of the Time-Dependent Navier–Stokes Equation 235

arising hyperbolic convective problem is stabilized appropriately. More details
can be found in, e.g., [12, 35,44].

An implicit fractional step method, though ensuring only first order accu-
racy in time is reported in [8]. The scheme circumvents the need of applying
unphysical boundary conditions for the pressure by including a diffusion term
in the incompressibility step and with the price of solving a saddle point system
at each iteration.

The class of the projection methods (ii) deserves a particular attention. The
projection methods are attractive thanks to the lesser computational cost they
require. Some recent works show that they may be efficiently implemented
on high performance computer platforms [20]. However they have some in-
surmountable disadvantages. As already mentioned, the projection methods
enforce artificial boundary conditions for the pressure, which are unphysical
and can generate a numerical boundary layer. This effect is described in, e.g.,
in [19]. In [28] it is shown that the (scalar) incremental projection-type meth-
ods of the above type, in addition to the already mentioned artificial pressure
boundary layers, exhibit large splitting errors with respect to the time and
space discretization error and poor convergence for non-homogeneous flows.
In a series of papers, for instance in [2], see also the references therein, it is
argued that vector penalty projection methods are capable of overcoming the
above drawbacks of their scalar counterparts at the price of solving saddle point
systems of augmented Lagrangian type. We stress that the accuracy of the pro-
jection type of methods depends on the method parameters, which is clearly
illustrated by the numerical experiments performed in this paper.

In contrast to the vast literature and variety of numerical schemes for non-
stationary constant density NS problems, the experience with variable density
NS is rather scarce. We refer explicitly to [24] for a projection-type scheme,
to [2], for a vector penalty projection scheme, that is first order in time, second
order in space and the numerical solution procedure includes saddle point sys-
tems, and to [1], where the space discretization is done using finite Differences
and the scheme utilized a hierarchy of adaptively refined meshes in order to
achieve a second order accurate in time projection-type method.

As already stated, a major part of the numerical simulation of nonstation-
ary flow models is the ability to efficiently solve the nonlinear time-dependent
variable density, variable-viscosity Navier–Stokes (NS) equations. NS is ei-
ther combined with a mass balance equation for the density or with another
equation, which describes the evolution of the interfaces between the different
phases, such as the Cahn-Hilliard (CH) equations (cf., e.g., [4, 46]).

In this work we deal mostly with NS, coupled to the mass balance equation
for the density, but we also include some numerical experiments within the
diffuse interface approach, where NS is coupled with CH. Briefly, CH belongs
to the class of diffuse interface methods to solve multiphase problems, where
it is assumed that the interfaces have some nonzero thickness and the problem
parameters vary continuously between the different flow phases. The alterna-
tive approach, the sharp interface methods, assumes that the interfaces have
zero thickness and the aim is to resolve those exactly, taking into account the
discontinuities of the problem coefficients across those interfaces. This requires

Math. Model. Anal., 20(2):232–260, 2015.

236 O. Axelsson, X. He and M. Neytcheva

the use of proper interface boundary conditions. The advantages and disadvan-
tages of both approaches are discussed in a vast amount of related literature
(see, e.g., the references in [48]). We note that when using CH, there is no
need to solve a separate equation for the density, since a special ’concentration’
variable determines automatically the relative portion of the masses and an
interface of chosen thickness.

Our main focus is on the numerical solution techniques, their robustness
with respect to problem, discretization and method parameters, and computa-
tional efficiency. In Section 2 we formulate the coupled Navier–Stokes-density
equations to be solved and give some stability bounds. Thereby we advocate
the use of a coupled system involving the momentum as primal variable in-
stead of the velocity. In Section 3 we present further arguments for use of
the momentum and the operator splitting and linearization method used. The
derivation of an error estimate for the splitting error, based on these approx-
imations is dealt with in Part II of this paper. Some of the derivations are
presented in [5]. In Section 4 we discuss the necessary stabilization methods
for the time-stepping scheme. Next, in Section 5 we propose a preconditioning
technique for the arising block matrix system. Section 6 contains numerical
results. We conclude the paper with some remarks, such as the possibility to
couple with elasticity equations when solving porous media problems.

2 The Navier–Stokes Equations with Variable Density

Density-dependent incompressible NS equations are used to model the motion
of a viscous incompressible non-homogeneous fluid flow. Let Ω be a smooth,
bounded and connected domain in Rd, d = 2, 3 and let u, p, ρ, µ denote
respectively the velocity vector, pressure, density and viscosity of a fluid in Ω.

2.1 Formulation of the coupled system

The variation of the variables u and ρ is described by the Navier–Stokes equa-
tions, augmented with an additional advection equation for the density. The
fluid is assumed to be incompressible. As described, e.g., in [33], see also [23],
the so obtained non-stationary incompressible equations take the form

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

∂

∂t
(ρu) +∇ · (ρu⊗ u)−∇ ·

(
µD(u)

)
+∇ p = ρ f , (2.2)

∇ · u = 0 (2.3)

in Ω × (0,∞). Here, D(u) = 1
2 (∇u + (∇u)T) is the symmetrized deformation

tensor, ρ f is a force function (per unit volume), where typically f = g, g be-
ing the gravity field. The incompressibility of the fluids is understood in the
sense that density cannot be changed by changes in pressure (cf. e.g. [43]).
The questions regarding existence, uniqueness and regularity of the solution
of the model (2.1)–(2.3) have been addressed in various studies by, e.g., La-
dyzhenskaya (1968), Desjardins (1997), Lions (1998), Danchin (2003, 2006).

Numerical Solution of the Time-Dependent Navier–Stokes Equation 237

For some more details the reader is referred to the more recent study [49] and
the references therein.

Using the incompressibility of the fluid, we can rewrite the term ∇·(ρu⊗u)
in (2.2) as follows. For the ith component it holds∑

j

∂j(ρuiuj) =
∑
j

(
uj∂j(ρui) + ρui∂juj

)
= (u · ∇)(ρui) + ρui∇ · u,

so ∇ · (ρu⊗ u) = (u · ∇)(ρu).
We assume that viscosity depends on density as some given continuously

differentiable, positive function µ(ρ) in the interval [0,∞). It follows then from
(2.1) and (2.3) that a similar equation as for the density holds also for the
viscosity. Namely, we have,

∂µ

∂t
+ u · ∇µ =

∂µ

∂ρ

(
∂ρ

∂t
+ u · ∇ρ

)
=
∂µ

∂ρ

(
∂ρ

∂t
+∇ · (ρu)

)
= 0. (2.4)

Hence, we can add ∂µ
∂t + u · ∇µ = 0 or ∂µ

∂t + ∇ · (µu) = 0 to the above set
of equations. However, we use the relation µ = µ(ρ) instead. Equations (2.2)
takes then the form

∂

∂t
(ρu) + (u · ∇)(ρu)−∇ ·

(
µD(u)

)
+∇p = ρ f . (2.5)

Introducing the momentum variable v = ρu and using the relation

∇ · v ≡ ∇ · (ρu) = ρ∇ · u + u · ∇ρ = u · ∇ρ,

equations (2.1)–(2.3) take the form

∂ρ

∂t
+ u · ∇ρ = 0, (2.6)

∂

∂t
(v) + (u · ∇)(v)−∇ ·

(
µD(u)

)
+∇p = ρ f , (2.7)

∇ · v − u · ∇ρ = 0, (2.8)

where u = 1
ρv. The initial conditions for the system (2.6)–(2.8) are assumed

to be

ρ|t=0 = ρ0, (ρu)|t=0 = v0, µ|t=0 = µ0 = µ(ρ0).

The assumptions for the boundary conditions follow those from [24], namely,
u|ΓD = b, u · n|ΓN = 0, ρ|Γin = a, a > 0, Γ = ∂Ω = ΓD ∪ ΓN . We note that
since the advection equation (2.1) has been rewritten in the form (2.6), i.e., as
a first order hyperbolic equation, it follows that the boundary conditions for ρ
are given at a possible inflow boundary, Γin = {x ∈ Γ, u · n < 0}.

We note, that Γin can vary with time. In our analysis, we assume that no
penetration boundary condition u · n|Γ = 0 holds, thus, Γin = ∅.

As for NS with constant density, there is no need to impose any initial
or boundary conditions for the pressure variable. The pressure is uniquely

Math. Model. Anal., 20(2):232–260, 2015.

238 O. Axelsson, X. He and M. Neytcheva

defined only up to a constant term. To make it unique, one normally imposes
the additional constraint

∫
Ω
p dΩ = 0.

We assume that the given data are such that ρ(t) and u(·, t) belong to some
Sobolev space, which is smoother than H1(Ω). In the sequel we assume that
µ is a known function of ρ.

For existence, uniqueness of the solution and stability estimates, see [33],
[23] and [34].

2.2 Stability properties of the underlying equations

With reference to the discussion on non-zero thickness of interfaces we assume
that the density is described by a continuous function. We present some rela-
tions, which turn out to be useful for showing stability of the operator splitting
scheme. Usually such relations are shown to hold for the numerical solution,
however we present their analogues for the continuous solution. Similar esti-
mates can be found in the related literature, see, e.g., [33], but they are not
identical.

By the assumption of the boundary condition and incompressibility, it fol-
lows that∫

Ω

ρu · ∇ρ dΩ =

∫
Ω

1

2
u · ∇

(
ρ2
)
dΩ = −

∫
Ω

1

2
∇ · u ρ2 dΩ+

∫
∂Ω

1

2
u · nρ2 ds=0.

Hence, a variational formulation of the mass balance equation leads to

1

2

d

d t

(∫
Ω

ρ2 dΩ

)
=

∫
Ω

[
ρ
∂ρ

∂t
+ ρu · ∇ρ

]
dΩ = 0,

that is, ∥∥ρ(·, t)
∥∥
0

= ‖ρ0‖0, t > 0, (2.9)

where ‖ · ‖0 denotes the L2(Ω) norm. Hence, in this norm, the density is
constant in time. In Part II of the paper it is shown that the more general

relation ‖ρ(t)‖q = ‖ρ0‖q, t > 0, 2 ≤ q ≤ ∞ holds, where ‖ρ(t)‖q =
(∫
Ω
ρq
) 1
q .

Using a variational formulation of the momentum equation (2.7), we find∫
Ω

[
∂

∂t
(v) · u + (u · ∇)(v) · u −∇ · (µD(u)) · u+∇ p · u

]
dΩ =

∫
Ω

ρ f · u dΩ.

Assume that
µ(ρ)

ρ
≥ α, α > 0, (2.10)

and that
∫
Ω
|∇u|2 dΩ ≥ β

∫
Ω
|u|2 dΩ for some β > 0. Then, as shown in Part

II of this paper and in [5], from the latter expression we obtain∥∥ρ(·, t)1/2u(·, t)
∥∥2
0
≤ e−αβ t

∥∥ρ1/20 u0

∥∥2
0

+ C

∫ t

0

e−αβ(t−s) ds

≤ e−αβ t
∥∥ρ1/20 u0

∥∥2
0

+
C

αβ

(
1− e−αβt

)
≤ e−αβ t

∥∥ρ1/20 u0

∥∥2
0

+
C

αβ
. (2.11)

Numerical Solution of the Time-Dependent Navier–Stokes Equation 239

If t = O(τ), i.e., if we perform just one time step, the second term above is
bounded by Cτ = |O(τ)|.

Thus, estimates (2.9)–(2.11) show unconditional stability of the solution
of the continuous problem. Furthermore, it is seen that, under the assump-
tion (2.10), the influence of the initial condition decreases exponentially to
zero with increasing time.

3 Time Discretization, Operator Splitting Scheme and
Linearization

The system of equations we consider in the sequel is the following

∂ρ

∂t
+ u · ∇ρ = 0, (3.1)

∂v

∂t
+ (u · ∇)v −∇ ·

(
µD(u)

)
+∇p = ρ f , (3.2)

∇ · v − u · ∇ρ = 0 (3.3)

with u = 1
ρv and appropriate boundary and initial conditions.

Equation (3.3) replaces the classical incompressibility constraint ∇ · u = 0.
We refer to (3.3) as the divergence constraint for the momentum.

Equations (3.1)–(3.3) are to be solved on a sequence of time intervals [tk, tk+
τk], k = 0, 1, . . ., where t0 = 0. The time steps τk may vary. The arising systems
are nonlinear. Newton’s method is applicable but less convenient to use for NS,
in particular for convection-dominated (high Reynolds number) flows. Among
the most prohibitive factors is the repeated recomputation of the nonlinear
Jacobian. For practical reasons it is better to use some form of linearization
through an operator splitting method.

The splitting method used in this paper is motivated by two facts. First,
since in general the initial pressure is not known, we keep the momentum
equation (3.2) and divergence constraint (3.3) in their coupled form intact,
which also enables the computation of the pressure without use of (artificial)
pressure boundary conditions that are shown to destroy the accuracy of the
computed pressure along the boundary [21]. Therefore, instead we split off
the advection equation for the density (3.1), which can be handled separately.
Hence, the momentum equation and the divergence constraint (3.2)–(3.3), and
the advection equation (3.1) are progressed separately at each time step.

Second, for reasons of stability and to avoid the need to use very small
time steps, we choose to use a stable semi-implicit time integration method,
preferably of second or higher order of accuracy.

To ensure that the unconditional stability of the continuous solution holds
also for the discrete solution, in [34] a method involving two projections per
time step is proposed. We show that the use of such projections can be avoided
if we use the equations for the momentum, v = ρu. Note that in multiphase
flows we treat interfaces between different media as having a certain thick-
ness governed by a diffuse interface model, which means that all variables,
including velocity and density, are continuous. In this way, the introduced mo-
mentum variable v is also continuous. In a single flow, since in general the

Math. Model. Anal., 20(2):232–260, 2015.

240 O. Axelsson, X. He and M. Neytcheva

velocity slows down when the flow enters a thicker medium, one can expect
that v has a smoother behaviour, i.e. less strong relative variations, than u
and can therefore be more accurately approximated numerically. If f = 0, in-
deed, inequality (2.11) indicates that the L2-norm of u(·, t) slows down if ρ(·, t)
increases. Finally, note, that by solving a saddle point system, keeping equa-
tions (2.2)–(2.3), respectively (3.2)–(3.3) coupled, artificial pressure boundary
conditions are avoided.

The equations can be solved by use of an operator splitting method such
that at each time interval we first compute the density, and then solve the
momentum equation together with the divergence constraint. Furthermore, we
linearize the equations using a ”frozen coefficient” approach in a similar way
as is done in the Oseen problem. In general, this method leads to a splitting
error of first order. In Part II of this paper we present an alternative method
which has a splitting error of second order, cf. [5].

3.1 Time discretization scheme

To introduce notation and formalize the proposed splitting scheme, we describe
the three-level backward differentiation formula (BDF2) algorithm that is of
second-order of accuracy in time for the density and momentum equations.

We find the approximate sequences {ρn,vn,un, pn}n=0,1,···,N with initial
conditions (ρ0 = ρ0,v

0 = v0,u
0 = v0/ρ0) and for all time steps n from 0 to

N − 1.
The BDF2 scheme for constant time steps progresses as follows. First, one

initializes (ρ0,v0,u0), and computes (ρ1,v1,u1, p1) by using one step of the
first-order Backward Euler scheme (for details we refer to [5]). Then for n ≥ 1,
we proceed as follows.

Algorithm 1 (BDF2)

A1-1: Set the linearly extrapolated velocity at time level n+ 1 as

u? = 2un − un−1.

A1-2: Compute ρn+1 from

3ρn+1 − 4ρn + ρn−1

2τ
+ u? · ∇ρn+1 +

1

2
ρn+1∇ · u? = 0. (3.4)

A1-3: Compute vn+1 and pn+1 from

3vn+1 − 4vn + vn−1

2τ
+ (u? · ∇)vn+1 −∇ ·

(
µn+1D

(
vn+1

ρn+1

))
+∇pn+1

= ρn+1 fn+1, (3.5)

∇ · vn+1 − τ2∆pn+1 = u? · ∇ρn+1. (3.6)

Numerical Solution of the Time-Dependent Navier–Stokes Equation 241

A1-4: Finally, recover the velocity un+1 as un+1 = vn+1/ρn+1.

In (3.4) we have added the stabilization term 1
2ρ
n+1∇·un to make the semi-

implicit scheme unconditionally stable. The added term is zero if the sequence
of velocities unn=0,...,N satisfies the divergence free condition. In (3.6) we have
additionally regularized the problem by adding the term −τ2∆pn+1, where −∆
is the negative Laplace operator. The purpose of this regularization is to avoid
unphysical oscillations in pressure. Details of all stabilisations used in this pa-
per are presented in Section 4, including some stabilization for the momentum
equation (3.5) in convection-dominant (high Reynolds number) problems. We
remark, if ∇ · u = 0, that since the average,

u · ∇ρ+
1

2
ρ∇ · u =

1

2

(
u · ∇ρ+∇ · (ρu)

)
,

i.e., the average of the conservative and convective terms equals the correspond-
ing expression in (3.4), this stabilization leads to a skew symmetric form, since
if ∇ · u = 0,

b(ρ,u) =

∫
Ω

u · ∇ρ = −
∫
Ω

ρ∇ · u = −b(u, ρ),

see [31] for further details.

If the extrapolated velocity u? satisfies the incompressibility constraint, i.e.,
∇ · u? = 0, the advection equation (3.4) and the coupled NS equations (3.5)–
(3.6) are of second order accuracy in time due to the BDF2 time discretization
scheme.

3.2 Operator splitting and related splitting error

As already stated, equations (3.1)–(3.3) will be solved by use of an operator
splitting method, where at each time interval we first compute the density
(3.1) and then solve the momentum equation (3.2) together with the diver-
gence constraint (3.3). Furthermore, we linearize the equations using a ”frozen
coefficient”, i.e., a Picard iteration approach in a similar way as is done in the
Oseen problem.

To this end, consider a time interval (t0, t0 + τ). Denote the already com-
puted values at t0 by u0, µ0 and ρ0 and let ũ, ṽ, p̃, µ̃ and ρ̃ be the corre-
spondingly computed values after linearization and operator splitting. Then,
for t ∈ (t0, t0 + τ) we solve

∂ρ̃

∂t
+∇ · (u0ρ̃) = 0, (3.7)

∂ṽ

∂t
+ u0 · ∇ṽ −∇ ·

(
µ0D(ũ)

)
+∇p̃ = ρ̃ f , (3.8)

∇ · ṽ − u0 · ∇ρ̃ = 0. (3.9)

Here we solve first (3.7) and then (3.8)–(3.9). Further, ũ = ρ̃−1ṽ.

Math. Model. Anal., 20(2):232–260, 2015.

242 O. Axelsson, X. He and M. Neytcheva

The relation µ̃ = µ(ρ̃) is assumed to be known. Solving equations (3.7)–
(3.9) does not provide a divergence-free velocity field. To ensure that, we use
the mass conservation equation for the density once more to solve

∂˜̃ρ
∂t

+∇ · (ũ˜̃ρ) = 0,

and combine this solution with already obtained values in the following way.
Assuming that we use quadratic basis functions for v, we can form a linear
combination of the quadratic polynomial interpolants of the functions 1

ρ0
ṽ, 1

ρ̃ ṽ

and 1˜̃ρ ṽ, to make in each element ˜̃u = (α 1
ρ0

+β 1
ρ̃ +γ 1˜̃ρ)ṽ satisfy ∇· ˜̃u = 0. This

leads to a system with three equations to solve for the coefficients α, β and γ.
To derive error estimates of the operator splitting and linearization errors,

we assume that the error in the velocity, u− ˜̃u is divergence-free. See Part II
for details.

It can be shown that

∂

∂t
(ρ− ρ̃)−∇ · (v− ṽ) = 0.

Taking variational formulations of the corresponding basic equations and mul-
tiplying with v− ṽ, p− p̃ and ρ− ρ̃ results in∫

Ω

[
∂

∂t

(
1

ρ
|v− ṽ|2

)
+ 2µ

∣∣∇(u− ũ)
∣∣2] dΩ

≤
∫
Ω

1

ρ
Ψ(u− ũ)dΩ +

∫
Ω

[
∂

∂t
(v− ṽ) + u · ∇(v− ṽ)

]
ΦdΩ.

Here

Φ =
1

ρ
(v− ṽ)− (u− ũ) =

(
1

ρ̃
− 1

ρ

)
v +

(
1

ρ
− 1

ρ̃

)
(v− ṽ),

Ψ = −(u− u0) · ∇v + (u− u0) · ∇(v− ṽ) +∇ ·
(
(µ− µ0)D(u)

)
−

−∇ ·
(
(µ− µ0)D(u− ũ)

)
+ (ρ− ρ0)f.

Analogously to the derivation of (2.11) (see [5]) one obtains

∂

∂t

(∥∥∥∥ 1√
ρ(·, t)

∣∣(v− ṽ)
∣∣(·, t)∥∥∥∥2

0

)
+ αβ

∥∥√ρ(·, t)
∣∣(u− ũ)(·, t)

∣∣∥∥2
0
≤ rhs,

t0 < t < t0 + τ.

Let

en =

∥∥∥∥ 1√
ρ(·, tn)

∣∣(v − ṽ)(·, tn)
∣∣∥∥∥∥

0

+
∥∥(ρ− ρ̃)(·, tn)

∥∥
0
.

Then, the following bound holds,

en+1 ≤ e−αβτen + τ1+ξC, n = 0, 1, . . . ,

Numerical Solution of the Time-Dependent Navier–Stokes Equation 243

where C is a constant, depending on the regularity of the solution and f .
By recursion, this shows that

en+1 ≤ e−αβτe0 + Cτ1+ξΣn
k=0e

−αβkτ ≤ e−αβτe0 + Cτ1+ξ/
(
1− e−αβτ

)
≤ e−αβτe0 +

C

αβ
τ ξ,

where T = nτ . (A corresponding bound can be proved even if the time steps
vary.)

Since by assumption e0 = O(τ1+ξ), we have then

en ≤
C

αβ
τ ξ.

Hence, if the regularity of the solution permits local errors, i.e., τ times
residual, of second order, i.e. ξ = 1, then the splitting and linearization error
is of first order, O(τ).

A similar bound for pressure p can be obtained. The above bounds are
derived for the continuous equations and show that we have full control of the
error due to the operator splitting and the linearization during integration over
all time intervals.

4 Regularization/Stabilization Issues

Stabilization of the density equation: As seen the density equation (3.4)
uses a semi-implicit scheme. In order to make it unconditionally stable, we add
an additional term 1

2ρ
n+1∇ · u? to the left-hand side of (3.4), where u? is the

linearly extrapolated velocity defined in Algorithm 1. The stabilization term is
used due to the semi-implicitness of the scheme and is zero if the sequence of
velocity unn=0,...,N satisfies the divergence free condition, i,e., ∇·un = 0. This
stabilization method is also utilised in [23], where no theoretical analysis is given
to show why it works. The appendix of this paper proves that the numerical
scheme (3.4) with the stabilization term 1

2ρ
n+1∇ ·u? is unconditionally stable.

This can be seen as a discrete version of the stability (conservation) property
(2.9) and is one of the novelties in this paper.

There are other ways to stabilize the transport equation (3.4), among them
is the so-called entropy viscosity method used in [24] and analysed in [22]. The
entropy viscosity method needs more computational efforts compared to the
technique used in this paper.

Stabilization of the momentum equation: For the convection dominant
problems (high Reynolds numbers) we need to stabilize the convective term in
equation (3.5). Which technique to use and what are the consequences of the
stabilization is among the research topics, which have been dealt for years and
is still not fully resolved.

In general, the flow is convection-dominated, that is, (Reu) takes large
values. If the local Peclet number, Pek = Rehk‖u‖∞,k, is larger than one,
spurious node-to-node oscillations occur around steep gradients. Various tech-
niques to avoid this can be used. Choosing the mesh size sufficiently small

Math. Model. Anal., 20(2):232–260, 2015.

244 O. Axelsson, X. He and M. Neytcheva

to satisfy the condition regarding the local Peclet number can lead to very
small elements and large linear systems to be solved. Another possibility is
to use locally refined meshes where there are steep gradients. In this paper
we do not discuss the global or local refinement strategy, and instead use the
streamline-diffusion method [15, 30]. This involves adding an additional term
γ(un ·∇un+1,un ·∇V) to the left-hand side of the momentum equation as (3.5),
where γ is the regularization parameter and V is the test function. The local
parameter γk is determined based on the local Peclet number defined above asγk =

1

2
hk

(
1− 1

Pek

)
, if Pek > 1,

γk = 0, otherwise.

(4.1)

When using this stabilization method in Algorithm 1, we use the extrapolated

velocity u? to replace un and represent the velocity un+1 as vn+1

ρn+1 , where ρn+1

has been computed from equation (3.4). In summary, we add

γ

(
u? · ∇vn+1

ρn+1
,u? · ∇V

)
(4.2)

to the left-hand side of (3.5), and γ is computed based on (4.1)

Stabilizing the saddle point problem: For the coupled equations (3.5)–
(3.6), space discretization by using the finite element method results in a linear
system of the saddle point structure, more details in Section 5. Stabilization is
required if the Ladyzhenskaya–Babuška–Brezzi (LBB) condition is not satisfied.
We let Vh and Ph denote the discrete subspaces for the momentum v and pres-

sure p. The LBB stability means that inf∀ph∈Ph sup∀vh∈Vh
(ph∇·vh)Ω

‖ph‖0 ‖vh‖H1(Ω)
≥

β > 0 for some β, that does not depend on the space discretization parame-
ter h.

As it turns out, see e.g. [37], also [3], in some cases unphysical pressure
oscillations may still occur even though the LBB condition is satisfied. In the
numerical experiments of this paper, we choose the stable finite element pair
which satisfies the LBB condition and additionally stabilize the saddle point
problem in order to avoid pressure oscillations as follows. We add an additional
term −δ∆pn+1 to the left-hand side of (3.6), forming the perturbed equation
at time level n+ 1 as

∇ · vn+1 − δ∆pn+1 = u? · ∇ρn+1. (4.3)

Here ∆ is the Laplacian operator. The extrapolated velocity u? and the density
ρn+1 on time level n + 1 have been computed, so the product u? · ∇ρn+1 is
taken as a right-hand side vector. To make the perturbation small, we need δ
be close to zero. In this paper we choose δ = O(τ2) as used in equation (3.6),
where τ is the time step. We note, that this kind of stabilization method for
saddle point problems is quite often used if the LBB condition is not satisfied,
or if the LBB condition is insufficient to avoid pressure oscillations (cf. e.g., [3]
where a stationary case is considered).

Numerical Solution of the Time-Dependent Navier–Stokes Equation 245

We note that here the stabilization −δ∆pn+1 is added not only to avoid
pressure oscillations, but also to improve the condition number of the saddle
point system arising in the spacial disrectization of (3.5)–(3.6). Numerical
experiments, not included in this paper, show that without this stabilization
(i.e., δ = 0) it takes many more iterations to solve the saddle point system by
using some Krylov subspace methods.

5 Block-Matrix Structure and Preconditioning

After discretizing the coupled equations (3.5)–(3.6) in space with some proper
finite element pair, such as the Taylor–Hood elements, we obtain an algebraic
system at each time step of the following form

A
[
vh(t+ τ)
ph(t+ τ)

]
= rhs, where A =

[
A BT

B −τ2C

]
. (5.1)

Here, vh, ph denote the corresponding finite element approximations. The ma-
trix block A has the form A = O(τ−1)M+E+W , where M is the velocity mass
block matrix, E arises from the discrete diffusion and convection operators and
W arises from the streamline-diffusion stabilization method (4.2). The block B
denotes the (negative) divergence operator and C is the discrete Laplacian op-
erator. The nonzero sub-block −τ2C is caused due to the stabilization reason
(4.3). Clearly, the time step τ can vary between time steps and in this paper
we choose it to be constant for simplicity. We refer to [14,47] for studying the
variable time step integration methods.

Due to its large size, systems with A are solved by a suitable preconditioned
iterative method. Among the best known preconditioners for saddle point
matrices are those, based on some approximate block factorizations of A. We
recall that a well-established class of preconditioners for a general nonsingular
saddle point matrix A0 =

[
A BT

B −C
]
, is based on the exact two-by-two block-

factorization of A0, namely, A0 =
[
A 0
B −SA0

][
I1 A

−1BT

0 I2

]
, where SA0

= C +

BA−1BT is the negative Schur complement matrix, and I1 and I2 denotes the
identity matrices with proper size. To precondition A0 it suffices to use an
approximation of the block lower-triangular factor

[
A 0
B −SA0

]
, and the quality

of the preconditioner depends on how accurate we solve systems with A and
how well we approximate SA0

(cf. e.g. [6]).
Due to the fact that the problem is time-dependent, the pivot block A

includes a mass matrix multiplied by a factor inversely proportional to the
time step, which in general improves the condition number of the block when
time step is relatively small. Further, if we use a rough stopping criteria for the
inner iterations to solve systems with A, it is advisable to use a flexible outer
iteration method to solve the system (5.1), such as GCR (c.f. [7] and [45]) or a
flexible variant of GMRES [39] which allows a variable preconditioner.

As is well-known, the most difficult problem is to find good quality approx-
imations of the Schur complement matrices. In time-dependent applications,
this task turns out to be less difficult than the stationary cases. In this paper,
with the assumption that the time step τ is relatively small, the negative Schur

Math. Model. Anal., 20(2):232–260, 2015.

246 O. Axelsson, X. He and M. Neytcheva

complement SA of A in (5.1) can be approximated as follows

SA = τ2C +BA−1BT ≈ B
(
O
(
τ−1

)
M
)−1

BT ≈ O(τ)BM̃−1BT ,

where M̃ denotes the diagonal of the velocity mass matrix M . The above
relation gives us a good approximation of SA, namely, S̃A = O(τ)BM̃−1BT .
For LBB stable finite element pairs the matrix B has full rank implying a
unique solution of the system (5.1). Further, the matrix S̃A is symmetric and
positive definite.

In summary, the precondition P used in this paper for the coefficient matrix
A in (5.1) is of a form

P =

[
Ã 0

B −S̃A

]
, (5.2)

where Ã denotes an approximation of A defined implicitly through an inner
iterative method with a proper stopping tolerance. To solve systems with A
and S̃A, in this paper we use an algebraic multigrid solution method and more
details are presented in Section 6.

6 Numerical Illustrations

We consider two test problems.

Problem 1 [Problem with a known analytic solution]. We solve the variable
density Navier–Stokes equations in the square domain [−0.5, 0.5]2, having the
following analytical solution,

ρ(x, y, t) = 2 + x cos
(
sin(t)

)
+ y sin

(
sin(t)

)
,

u(x, y, t) =
[
−y cos(t), x cos(t)

]T
, p(x, y, t) = sin(x) sin(y) sin(t). (6.1)

These functions satisfy the mass conservation equation. Correspondingly, the
right-hand side of the momentum equation has the form

ρf =

[
ρ(x, y, t)(y sin(t)− x cos(t)2) + cos(x) sin(y) sin(t)
−ρ(x, y, t)(x sin(t) + y cos(t)2) + sin(x) cos(y) sin(t)

]
.

This problem has been used as a benchmark test in several other related works,
such as [24].

Problem 2 [Rayleigh–Taylor instability]. We compute the development of a
Rayleigh- Taylor instability (RTI) in the rectangular domain [0, 1]∪ [0, 4], con-
sisting of two immiscible liquids. At t = 0 the heavier liquid is located above
the lighter, and for t > 0, the system is driven by the action of the down-
ward gravity force, i.e., the force term in the momentum equation is directed
downward and is equal to ρg.

Both problems are discretized in space using a Q2-Q2-Q1 finite element
discretization for the density-velocity-pressure. Here Q1 and Q2 stand for ’bi-
linear’ and ’biquadratic’ basis functions, correspondingly. The FEM pair Q2-Q1

Numerical Solution of the Time-Dependent Navier–Stokes Equation 247

is one of the Taylor–Hood elements and is LBB-stable. All results in this paper
are carried out in Matlab 7.13 (R2011b), and performed on a Linux-64 platform
with 4 Intel(R) Core i5 CPUs, 660@3.33GHz. The reported execution time is
in seconds.

Table 1. Time discretization error, BDF2.

Velocity Density Pressure
τ Inf norm Rate Inf norm Rate Inf norm Rate

0.0312 3.28e−4 3.96 4.66e−4 4.16 1.38e−3 3.81
0.0156 8.28e−5 3.96 1.12e−4 4.34 3.63e−4 3.85
0.0078 2.09e−5 3.93 2.58e−5 4.44 9.42e−5 5.12
0.0039 5.32e−6 – 5.80e−6 – 1.84e−5 –

τ L2 norm Rate L2 norm Rate L2 norm Rate

0.0312 3.47e−2 4.08 3.53e−2 4.36 2.67e−2 3.88
0.0156 8.50e−3 4.05 8.90e−3 4.04 6.89e−3 3.81
0.0078 2.10e−3 4.01 2.20e−3 3.91 1.81e−3 3.76
0.0039 5.24e−4 – 5.63e−4 – 4.81e−4 –

We first present some tests for Problem 1. The discrete problem is solved
using the regularized splitting schemes of Sections 3 and 4. The mesh size
is chosen small enough so that the error from the discretization in space is
negligible compared to the time stepping error.

Since when using BDF2 (Algorithm 1) the overall discretization error is
O(τ2) + O(h2), the time steps tested have been chosen in the range 8h ≥
τ ≥ h, where h is the mesh size. The results are shown in Table 1, where
the parameters are fixed as h = 0.0039, µ = 0.01, T = 3.14, and the error is
measured using the maximum norm. As can be seen, the time discretization
error is of second-order for all the quantities.

To check whether Algorithm 1 can reasonably well resolve the pressure,
we plot in Figure 1 the difference between the analytical and the computed
pressure. Figure 1 shows that the pressure is captured quite well and the small
difference between the computed and analytical pressure holds everywhere in
the domain. This is a contrast to the plot in [21] where an artificial boundary
condition is imposed for the pressure unknowns causing a larger error along
the boundaries of the computational domain.

As can be seen from Table 1, for the density the convergence rates are larger
than four in the infinite and L2 norms. Also, the convergence rate in the infinite
norm increases for smaller time steps, and decreases for smaller time steps in
the L2 norm.

Perhaps, it might be due to that the local errors where the maximal errors
occur, are damped more efficiently for smaller time steps than the average L2

errors are. Currently, no fully satisfactory explanation for these observations
is found and they need more detailed analysis. In a test where Crank–Nicolson
method was used instead of BDF, see [5], this behaviour was not seen.

As a check of the quality of the preconditioner P in (5.2) for Problem 1,
Table 2 presents the iteration counts when solving the system (5.1) by GCR

and the iterations when solving systems with S̃A and A by the off-the-shelf

Math. Model. Anal., 20(2):232–260, 2015.

248 O. Axelsson, X. He and M. Neytcheva

Figure 1. Difference between exact and computed pressure, τ = h = 0.0156 and T = 1.57.

aggregation-based multigrid solver AGMG from [36]. All three stopping toler-
ances are relative and chosen to be 10−6. For a fixed ratio τ/h, i,e., looking
through the columns, one can see that the AGMG and the GCR iterations are
essentially independent of the mesh refinement. If we fix the mesh size h, i.e.,
looking through the rows, one can see that AGMG and the GCR iterations
depend slightly on the time steps τ . Table 2 shows that the preconditioner
P with AGMG as the inner solver for the sub-blocks has an optimal order of
computational complexity.

Table 2. Number of iterations.

Iterations Iterations Iterations

τ S̃A A A S̃A A A S̃A A A
h = 0.031 h = 0.015 h = 0.007

h 8 5 5 8 5 5 8 7 7
2h 8 7 7 8 7 7 8 8 9
4h 8 9 8 8 9 10 8 8 8
8h 8 7 11 8 10 10 8 10 10

As mentioned, the results in Table 2 are obtained by setting all three stop-
ping tolerances as 10−6. The purpose of choosing such a tight tolerance for
AGMG is to illustrate its efficiency. In practice, however, it is not necessary to
choose such a small tolerance. For the S̃−1A , only one AGMG V-cycle is enough
to obtain an accurate solution.

We turn next to Problem 2. RTI describes the phenomena of mixing of
two materials, one lighter than the other, seeking to reduce their combined
potential energy. This is a potentially unstable hydrodynamic configuration,
involving linear, nonlinear and turbulent regimes. RTI, namely, the occurrence

Numerical Solution of the Time-Dependent Navier–Stokes Equation 249

of interfacial instabilities, has been first considered in 1883 by Lord Rayleigh
in the idealized setting of two incompressible immiscible fluids in a constant
gravitational field.

Due to the fact that over longer time the processes become turbulent and
need to be resolved down to the Kolmogorov scale, some studies take the ap-
proach to consider the materials compressible (cf. [17]). The references we have
used are [17,24,29,32,43]. In some of the works, the simulations are performed
within the sharp interface framework, referred also as ‘direct numerical sim-
ulations’ (DNS) of the NS equations, as in [17, 24]. The advantage of DNS,
compared to the other option introduced below, is its simplicity since one does
not have to couple other mathematical models with the Navier–Stokes equa-
tions. The main drawback is that DNS method highly depends on the computer
resources. Because the Navier–Stokes equations do not straightforwardly de-
scribe the interface and the surface tension force is not considered at all, the
mesh must namely be sufficiently fine to guarantee the resolution, especially
within the interface. In some other works, such as in [43], Euler equations are
solved. A paper rich with experimental observations and numerical simulations,
based on NS but assuming compressibility, is [29].

The framework we follow here is to couple NS to CH. The CH equation is
one of the modelling tools within the diffuse interface approach and avoids the
need to solve the density equation. This approach is followed by [4,9,16,32,40]
and others.

The coupled NS-CH system in dimensionless form reads as follows

∂v

∂t
+ (u · ∇)v − 1

Re
∆u +∇p =

ρ

Fr
g,

∇ · v = u · ∇ρ,
η − Ψ ′(C) + ε2∆C = 0,

− 1

Pe
∆η +

∂C

∂t
+ (u · ∇)C = 0 (6.2)

with ∂C
∂n = 0, ∂η

∂n = 0, and C(x, 0) = C0(x), together with some appropriate
boundary and initial conditions for the NS equations. Here the momentum
variable v is the same as defined before, namely, v = ρu.

In Problem 2, we assume that the two immiscible and incompressible phases
share the same viscosity value but have different densities. This assumption
is used only for simplicity, and there is no hesitation to extend the numerical
scheme proposed for (6.2) in this paper to variable density and variable vis-
cosity applications. In the above equations, the term C is referred to as the
concentration and the term η denotes the chemical potential. The function
C(x, t) attains a different constant value in each flow phase and rapidly but
smoothly changes within the interface between the phase flows, enabling in
this way to detect the position of the interface. In this paper we let C vary
between −1 and 1 and, accordingly, choose the double well function Ψ(C) as
Ψ(C) = 1

4 (C2 − 1)2. The dimensionless physical parameters are the Reynolds
number Re, Froude number Fr, Peclet number Pe and the Cahn number ε.
The derivation of the dimensionless form (6.2) and the expressions of these
parameters are clearly given in [32].

Math. Model. Anal., 20(2):232–260, 2015.

250 O. Axelsson, X. He and M. Neytcheva

System (6.2) is solved again using an operator splitting technique. One
solves NS to determine the velocity, then solves CH to determine the position
of the interface, namely, density ρ, and repeats. In [16], convergence of the NS-
CH splitting is derived. We point out that, in general, the coupling between NS
and CH is not only via velocity but also via an additional term in the right hand
side vector of NS, that depends on the concentration variable and describes the
so-called surface tension forces. As explained in [43], and implemented in [24],
this force term can be ignored when RTI is simulated.

As can be seen, in contrast to the DNS method (3.1)–(3.3), in the coupled
system (6.2) there is no need to solve the density equation anymore. The
reason is that when the interface is known, the density can be straightforwardly
obtained. After computing C at the next time step, the density at the next
time step is recovered as a weighted harmonic average of the densities of the
different phases (two in this case),

ρ(C) = 2
/(

(1− C)/ρ1 + (1 + C)/ρ2
)
. (6.3)

The expression (6.3) follows naturally since (1 − C)/2 and (1 + C)/2 are the
mass fractions of the fluids and a unit volume 1/ρ consists of the corresponding
volumes of the two fluids.

The numerical scheme to solve (6.2) is described as follows:

Algorithm 2 (Coupled NS-CH) Given initial (C0, η0,u0), for n ≥ 1, pro-
ceed:

A2-1: Compute (Cn+1, ηn+1) by solving the Cahn-Hilliard equations

ηn+1 − Ψ ′
(
Cn+1

)
+ ε2∆Cn+1 = 0,

− 1

Pe
∆ηn+1 +

∂Cn+1

∂t
+
(
un · ∇

)
Cn+1 = 0. (6.4)

A2-2: Recover ρn+1 as (6.3).

A2-3: Compute (vn+1, pn+1) by solving

3vn+1 − 4vn + vn−1

2τ
+ (u? · ∇)vn+1 − 1

Re
∆
vn+1

ρn+1
+ asd(u

?, V) +∇pn+1

=
ρn+1

Fr
g,

∇ · vn+1 − τ2∆pn+1 = u? · ∇ρn+1, u? = 2un − un−1. (6.5)

A2-4: Recover un+1 = vn+1/ρn+1.

Here τ is the time step. For n = 1, (v1,u1, p1) can be computed by using
one step of the first-order Backward Euler scheme. As already introduced in

Section 4 the additional term asd(u
?, V) =

∑
k γk(u? · ∇vn+1

ρn+1 ,u
? · ∇V) arises

Numerical Solution of the Time-Dependent Navier–Stokes Equation 251

from the streamline diffusion stabilization and the added term −τ2∆pn+1 is
used to avoid pressure oscillations.

The nonlinear term in the CH part is Ψ ′(Cn+1) = (Cn+1)3−Cn+1. In order
to make the CH equations numerically stable, here we use an operator splitting
method, namely, Ψ ′(Cn+1) = (Cn+1)3−Cn. This stabilization method is quite
often used [30,32]. How to efficiently solve the linear systems arising from the
Cahn-Hilliard equations (6.4) falls out of the scope of the present paper. We
follow the details in [4, 10]. For the solution of the Navier–Stokes equations
(6.5) we use the already discussed preconditioning techniques in Section 5.

The settings of the problem parameters for Problem 2 are fixed as fol-
lows. The density difference is represented by the Atwood number At =
(ρ2 − ρ1)/(ρ2 + ρ1). Here we choose the density ratio to be ρ2/ρ1 = 3 and 7,
i.e., the corresponding Atwood numbers At = 0.5 and 0.75. At t = 0, the initial
location of the two immiscible and incompressible flows are imposed as

C(x, 0) = tanh
(y − 2− 0.1cos(2πx)√

2ε

)
,

where C = 1 denotes the flow with density ρ2, C = −1 corresponds to the
flow with density ρ1, and −1 � C � 1 describe the location of the interface.
The computational domain is [0, 1] ∪ [0, 4] and we simulate on a space mesh
m× 4m, i.e., the mesh size is h = 1/m. The Cahn number ε, that determines
the thickness of the interface, is set to be ε = 0.08

√
2h. The reason is that

we want to have a sufficient number of grid points across the interface. The
Peclet number is chosen to be Pe = 1/ε and the effect of the Peclet number is
numerically illustrated in [32]. The Reynolds number is set to be Re = 1000
and Re = 5000. The time step is chosen as τ = 0.16

√
2h.

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(a) t = 0

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(b) t = 2.0

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(c) t = 2.5

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(d) t = 3.0

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(e) t = 3.5

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(f) t = 3.75

Figure 2. The interface of Problem 2 for Re = 1000 and At = 0.5.

The evolution of the interface is plotted in Figures 2–4 in the time scale
of Tryggvason [43], which is related to ours by tTryg = t

√
At. Here we choose

the mesh size as h = 1/64. Due to the reasons given before, we stop the

Math. Model. Anal., 20(2):232–260, 2015.

252 O. Axelsson, X. He and M. Neytcheva

simulations when the heavier fluid reaches the bottom. As can be seen in
Figures 2–3, for the same Reynolds number a larger density ratio results in a
faster evolution, namely the heavier flow reaches the bottom within a shorter
time. The Reynolds number is another factor that influences the position and
figure of the interface, comparing Figures 2 and 4. For a comparison, here we
choose Figure 6 in [32] as a reference. The reasons are that we both use the
NS-CH scheme and choose similar parameters. Figure 2 resembles well that
in [32], and this means that Algorithm 2 introduced in this paper can accurately
capture the physical properties in the RTI problem.

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(a) t = 0

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(b) t = 2.0

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(c) t = 2.25

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(d) t = 2.5

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(e) t = 3.0

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(f) t = 3.25

Figure 3. The interface of Problem 2 for Re = 1000 and At = 0.75.

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(a) t = 0

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(b) t = 2.0

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(c) t = 2.5

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(d) t = 3.0

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(e) t = 3.5

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(f) t = 3.75

Figure 4. The interface of Problem 2 for Re = 5000 and At = 0.5.

In Algorithm 2 [Coupled NS-CH], at each time step the variables
(vn+1, pn+1) are coupled together and computed simultaneously by solving

Numerical Solution of the Time-Dependent Navier–Stokes Equation 253

Table 3. Number of iterations for computing (vn+1, pn+1) in Algorithm 2.

h GCR-Iter.-A AGMG-Iter.-A AGMG-Iter.-S̃A CPU time

1/64 8 2 6 0.28
1/128 8 2 6 1.14
1/256 8 2 6 4.22

the equation (6.5). After space discretization, equation (6.5) can be rewrit-
ten as a linear system in a block structure as (5.1). Here we choose GCR
method to solve the arising system. The relative stopping tolerance is chosen
to be 10−6 and the number of GCR iterations is denoted as GCR-Iter.-A. The
preconditioner used for the matrix A in (5.1) is P, as given in (5.2). In the
preconditioner, we use AGMG solution method for two sub-systems with A
and S̃A and the relative stopping tolerance is 10−2. The number of iterations
is denoted as AGMG-Iter.-A and AGMG-Iter.-S̃A. In Table 3 we give the num-
ber of these three iterations and the computational CPU time for computing
(vn+1, pn+1) at each time step. The computational grids are 64×256, 128×512
and 256 × 1024. The corresponding mesh sizes are h = 1/64, h = 1/128 and
h = 1/256. Here we also choose the time step as τ = 0.16

√
2h and the Reynolds

number as Re = 3000. As seen in Table 3, all the three iteration counts are
independent of the mesh size and the computational time shows that the com-
plexity is of the optimal order.

There is another class of powerful solution methods for the variable density
Navier–Stokes equations, namely, the projection methods. Among many vari-
ants, for comparison in this paper we choose the BDF second-order rotational
projection method [24]. This method gained popularity since the pressure is de-
termined by just solving a Poisson equation with constant coefficient per time
step. The comparison is based on the Rayleigh–Taylor instability problem,
and coupled with the Cahn-Hilliard equations. The computational procedure
is presented as follows.

Algorithm 3 (Coupled NS-CH) Given initial (C0, η0,u0, p0, φ0), for n ≥
1:

A3-1: Compute (Cn+1, ηn+1) by solving the Cahn-Hilliard equations (6.4).

A3-2: Recover ρn+1 as (6.3).

A3-3: Compute un+1 by solving

ρn+1 3un+1 − 4un + un−1

2τ
+ ρn+1(u? · ∇)un+1 − 1

Re
∆un+1

+∇
(
pn +

4

3
φn − φn−1

3

)
=
ρn+1

Fr
g, (6.6)

where u? = 2un − un−1.

Math. Model. Anal., 20(2):232–260, 2015.

254 O. Axelsson, X. He and M. Neytcheva

A3-4: A pressure correction is evaluated by solving

∆φn+1 =
3χ

2τ
∇ · un+1, ∂nφ

n+1|∂Ω . (6.7)

A3-5: Finally, the pressure is updated as

pn+1 = pn + φn+1 − 1

Re
∇ · un+1.

For n = 1, (u1, p1, φ1) can be computed by using one step of the first-order
incremental projection method in [24]. The method parameter χ is assumed to
satisfy

∀n = 0,, N, χ ≤ ρn(x) in Ω. (6.8)

In practice χ is chosen as χ = min ρ0 [24].
As seen in steps A3-3 and A3-4, the velocity un+1 and pressure pn+1 are

decoupled and computed separately. To solve the linear systems arising in the
space discretization of (6.6) and (6.7), we use the AGMG solution method
and the relative stopping tolerance is 10−6. The iteration count numbers are
denoted as AGMG-Iter.-u and AGMG-Iter.-p. In Table 4 we show the two
iteration counts and the computational CPU time each time step for computing
(un+1, pn+1). Here we use the same mesh size h, the time step τ and other
physical parameters as used in Table 3. As seen in Table 4, the two iteration
counts are also independent of the mesh size and the computational time is of
the optimal order too.

Comparing the CPU time in Tables 3 and 4, we see that the projection
scheme is somewhat more efficient than the coupled scheme introduced in this
paper. However, the projection scheme needs artificial boundary conditions,
as in (6.7), and the initial condition for the pressure which is not known in
general.

Table 4. Number of iterations for computing (un+1, pn+1) in Algorithm 3.

h AGMG-Iter.-u AGMG-Iter.-p CPU time

1/64 6 13 0.12
1/128 6 14 0.51
1/256 8 14 2.12

Furthermore, the accuracy of the rotational projection method in Algo-
rithm 3 depends on the method parameter χ. As analysed in [24], χ should
satisfy the constraint (6.8) and all experiments are carried out by choosing
χ = min ρ0 in [24]. However, there is no guarantee that χ = min ρ0 fully sat-
isfies (6.8). A more safe choice is that we take χ much smaller. We conduct
numerical experiments that show that the accuracy of the projection method is
destroyed by choosing χ = 0.001 min ρ0. In Figure 5 we plot the interfaces sim-
ulated by Algorithm 2 and Algorithm 3 with χ = min ρ0 and χ = 0.001 min ρ0.
As compared, the projection method used in Algorithm 3 with χ = min ρ0 can

Numerical Solution of the Time-Dependent Navier–Stokes Equation 255

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(a) Algorithm
2

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(b) Algorithm
3 with χ =
min ρ0

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

(c) Algorithm
3 with χ =
0.001 min ρ0

Figure 5. Re = 3000, the interface of Problem 2 at dimensionless times 1.75 simulated by
different schemes, h = 1/128.

compute nearly the same interface as the coupled scheme in Algorithm 2, see
Figures 5 (a) and 5 (b). Also, these two figures are almost the same as that
plotted in [32]. By decreasing χ the computed interface is much less accu-
rate, as shown in Figure 5 (c). This means that the accuracy of the projection
method introduced in [24] depends strongly on the method parameter.

To summarize, comparing the projection and the coupled schemes, based
on the numerical experiments in this paper, we conclude that the projection
method is more efficient in terms of solution time. The reason is that the
velocity and pressure are decoupled and computed by solving two elliptic equa-
tions. On the other hand, its accuracy depends on a method parameter. For
the coupled scheme introduced in this paper, the momentum and the pres-
sure are coupled and computed simultaneously. There is no additional method
parameter involved. A further development of efficient preconditioners in the
coupled scheme will make it faster and more attractive for large scale numerical
simulations. This is considered as a future research topic.

7 Concluding Remarks

We have studied various aspects of the numerical solution of the variable den-
sity Navier–Stokes equations – discretization, operator splitting and lineariza-
tion, and the interplay between the related errors. We have also considered
preconditioning techniques, suitable for the arising linear systems, in order to
enable fast and robust numerical simulations of the underlying flow phenom-
ena.

Math. Model. Anal., 20(2):232–260, 2015.

256 O. Axelsson, X. He and M. Neytcheva

We have investigated the impact of using the momentum instead of the
velocity as a primal unknown variable, based on the argument that in a single
media flow the momentum can be better behaved than the velocity and, thus,
is easier to compute numerically. Due to the diffusion interface model used
in multiphase flow problems, the momentum variable is continuous within the
whole computational domain, in particular across the interfaces between dif-
ferent media. We have also considered the efficiency of an operator splitting,
where no artificial boundary conditions have to be imposed for the pressure,
enabling in this way the use of well-known high quality preconditioners for sad-
dle point matrices. The divergence free vector field is computed without the
need to use projections onto the divergence-free vector space. No lower-order
errors due to splitting and linearization arise.

We also construct an efficient stabilization method for the mass balance
equation, namely, the density equation. This stabilization makes the semi-
implicit scheme for the density equation unconditionally stable, and needs less
computational complexity than other methods. Also, other stabilizations are
used in this paper to avoid unphysical oscillations in the momentum and pres-
sure. The efficiency of the proposed preconditioner, for the arising saddle point
system at each time step, is tested via numerical experiments. The results
presented in this paper show that the computational complexity by using the
proposed preconditioner is of optimal order.

A complete testing and comparison of the performance of the proposed
solution scheme with other, projection-based operator splitting schemes, would
be very insightful and is a subject of a separate study.

The methods used in this paper can be applied also for more coupled equa-
tions, such as Navier–Stokes equations for a free fluid coupled with poroelas-
ticity equations, modelled by Darcy flow equations and equations for a porous
elastic medium.

Acknowledgements

The authors are indebted to the anonymous reviewer for the constructive com-
ments and suggestions that lead to improvments in the contents of the paper
and the presentation of the results.

Appendix

Consider the density equation ∂ρ
∂t + u · ∇ρ = 0, where we use the following

numerical scheme to compute ρn+1 for time level n ≥ 1

3ρn+1 − 4ρn + ρn−1

2τ
+ u? · ∇ρn+1 +

1

2
ρn+1∇ · u? = 0. (7.1)

Here u? denotes the linearly extrapolated velocity at time level n+ 1 as u? =
2un − un−1. The time step is denoted as τ .

Theorem 1. Assume that the sequence of the velocities unn=0,...,N satisfies the
boundary conditions un · n|∂Ω = 0, the solutions of (7.1) satisfy

3
∥∥ρN∥∥2 +

∥∥ρ0∥∥2 + 2
∥∥ρN − ρN−1∥∥2 ≤ 4

∥∥ρ1∥∥2 + 2
∥∥ρ1 − ρ0∥∥2.

Numerical Solution of the Time-Dependent Navier–Stokes Equation 257

Proof. We multiply (7.1) by 4τρn+1 and integrate over Ω. We have

4

∫
Ω

2ρn+1
(
ρn+1 − ρn

)
−
∫
Ω

2ρn+1
(
ρn+1 − ρn−1

)
+ 2τ

∫
Ω

(
2ρn+1u? · ∇ρn+1 +

(
ρn+1

)2∇ · u?) = 0. (7.2)

Using the boundary condition on u? and integrating by parts, we have

2τ

∫
Ω

(
2ρn+1u? · ∇ρn+1 +

(
ρn+1

)2∇ · u?) = 2τ

∫
Ω

∇ ·
((
ρn+1

)2
u?
)

= 0. (7.3)

Using the identities 2a(a− b) = a2− b2 + (a− b)2 and (7.3), we can rewrite the
identity (7.2) as

4
(∥∥ρn+1

∥∥2−∥∥ρn∥∥2+
∥∥ρn+1−ρn

∥∥2)−(∥∥ρn+1
∥∥2−∥∥ρn−1∥∥2+

∥∥ρn+1−ρn−1
∥∥2) = 0.

(7.4)
Summing up the identity (7.4) from n = 1 to n = N − 1 we have

4

(∥∥ρN∥∥2 − ∥∥ρ1∥∥2 +

N−1∑
k=1

∥∥ρk+1 − ρk
∥∥2)

−
(∥∥ρN∥∥2 − ∥∥ρ0∥∥2 +

N−1∑
k=1

∥∥ρk+1 − ρk−1
∥∥2) = 0,

furthermore

3
∥∥ρN∥∥2 +

∥∥ρ0∥∥2 + 4

N−1∑
k=1

∥∥ρk+1 − ρk
∥∥2 = 4

∥∥ρ1∥∥2 +

N−1∑
k=1

∥∥ρk+1 − ρk−1
∥∥2.

Using the inequality 2ab ≤ a2 + b2 we have∥∥ρk+1 − ρk−1
∥∥2 =

∥∥(ρk+1 − ρk
)

+
(
ρk − ρk−1

)∥∥2
≤
(∥∥ρk+1 − ρk

∥∥+
∥∥ρk − ρk−1∥∥)2

≤ 2
(∥∥ρk+1 − ρk

∥∥2 +
∥∥ρk − ρk−1∥∥2).

Then we have

3
∥∥ρN∥∥2 +

∥∥ρ0∥∥2 + 2

N−1∑
k=1

∥∥ρk+1 − ρk
∥∥2 ≤ 4

∥∥ρ1∥∥2 + 2

N−1∑
k=1

∥∥ρk − ρk−1∥∥2.
Finally we have

3
∥∥ρN∥∥2 +

∥∥ρ0∥∥2 + 2
∥∥ρN − ρN−1∥∥2 ≤ 4

∥∥ρ1∥∥2 + 2
∥∥ρ1 − ρ0∥∥2.

Math. Model. Anal., 20(2):232–260, 2015.

258 O. Axelsson, X. He and M. Neytcheva

References

[1] A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell and M.L. Welcome. A conserva-
tive adaptive projection method for the variable density incompressible Navier–
Stokes equations. J. Comput. Phys., 142(1):1–46, 1998.
http://dx.doi.org/10.1006/jcph.1998.5890.

[2] P. Angot, J.-P. Caltagirone and P.A. Fabrie. A fast vector penalty-projection
method for incompressible non-homogeneous or multiphase Navier–Stokes prob-
lems. Appl. Math. Lett., 25(11):1681–1688, 2012.
http://dx.doi.org/10.1016/j.aml.2012.01.037.

[3] O. Axelsson, V.A. Barker, M. Neytcheva and B. Polman. Solving the Stokes
problem on a massively parallel computer. Math. Model. Anal., 6(1):7–27, 2001.
http://dx.doi.org/10.1080/13926292.2001.9637141.

[4] O. Axelsson, P. Boyanova, M. Kronbichler, M. Neytcheva and X. Wu. Numerical
and computational efficiency of solvers for two-phase problems. Comput. Math.
Appl., 65(3):301–314, 2013. http://dx.doi.org/10.1016/j.camwa.2012.05.020.

[5] O. Axelsson, X. He and M. Neytcheva. Numerical solution of the time-dependent
Navier–Stokes equation for variable density-variable viscosity. Technical Report
2012-019, Institute for Information Technology, Uppsala University, The Sweden,
2014.

[6] O. Axelsson and M. Neytcheva. A general approach to analyse preconditioners
for two-by-two block matrices. Numer. Linear Algebra Appl., 20(5):723–742,
2013. http://dx.doi.org/10.1002/nla.830.

[7] O. Axelsson and P.S. Vassilevski. A black box generalized conjugate gradient
solver with inner iterations and variable-step preconditioning. SIAM J. Matrix
Anal. Appl., 12(4):625–644, 1991. http://dx.doi.org/10.1137/0612048.

[8] J. Blasco, R. Codina and A. Huerta. A fractional-step method for the incompress-
ible Navier–Stokes equations related to a predictor-multicorrector algorithm. Int.
J. Numer. Meth. Fluids, 28(10):1391–1419, 1998.

[9] P. Boyanova, M. Do-Quang and M. Neytcheva. Efficient preconditioners for
large scale binary Cahn–Hilliard models. Comput. Meth. Appl. Math., 12(1):1–
22, 2012. http://dx.doi.org/10.2478/cmam-2012-0001.

[10] P. Boynanova. On numerical solution methods for block-structure discrete sys-
tems. PhD thesis, Institute for Information Technology, Uppsala University, The
Sweden, 2012.

[11] A.J. Chorin. Numerical solution of the Navier–Stokes equations. Math. Comp.,
22(104):745–762, 1968. http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2.

[12] J.C. Chrispell, V.J. Ervin and E.W. Jenkins. A fractional step θ-method for
convection–diffusion problems. J. Math. Anal. Appl., 333(1):204–218, 2007.
http://dx.doi.org/10.1016/j.jmaa.2006.11.059.

[13] H.-J.G. Diersch and O. Kolditz. Variable-density flow and transport in porous
media: approaches and challenges. Adv. Water Resour., 25(8):899–944, 2002.
http://dx.doi.org/10.1016/S0309-1708(02)00063-5.

[14] S. Eckert, H. Baaser, D. Gross and O. Scherf. A BDF2 integration method
with step size control for elasto-plasticity. Comput. Mech., 34(5):377–386, 2004.
http://dx.doi.org/10.1007/s00466-004-0581-1.

http://dx.doi.org/10.1006/jcph.1998.5890
http://dx.doi.org/10.1016/j.aml.2012.01.037
http://dx.doi.org/10.1080/13926292.2001.9637141
http://dx.doi.org/10.1016/j.camwa.2012.05.020
http://dx.doi.org/10.1002/nla.830
http://dx.doi.org/10.1137/0612048
http://dx.doi.org/10.2478/cmam-2012-0001
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
http://dx.doi.org/10.1016/j.jmaa.2006.11.059
http://dx.doi.org/10.1016/S0309-1708(02)00063-5
http://dx.doi.org/10.1007/s00466-004-0581-1

Numerical Solution of the Time-Dependent Navier–Stokes Equation 259

[15] H.C. Elman, D.J. Silvester and A.J. Wathen. Finite Elements and Fast Iterative
Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University
Press, 2014.

[16] X. Feng. Fully discrete finite element approximations of the Navier–Stokes–
Cahn–Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer.
Anal., 44(3):1049–1072, 2006. http://dx.doi.org/10.1137/050638333.

[17] S. Gauthier and B. Le Creurer. Compressibility effects in Rayleigh–Taylor
instability-induced flows. Phil. Trans. R. Soc. A, 368(1916):1681–1704, 2010.

[18] R. Glowinski. Numerical Methods for Nonlinear Variational Problems, volume 4.
Springer, 1984.

[19] P.M. Gresho. On the theory of semi-implicit projection methods for viscous
incompressible flow and its implementation via a finite element method that
also introduces a nearly consistent mass matrix. Part 1: Theory. Int. J. Numer.
Meth. Fluids, 11(5):587–620, 1990. http://dx.doi.org/10.1002/fld.1650110509.

[20] J.-L. Guermond and P. Minev. Efficient Parallel Algorithms for Unsteady In-
compressible Flows. In Numerical Solution of Partial Differential Equations:
Theory, Algorithms, and Their Applications, pp. 185–201. Springer, 2013.

[21] J.-L. Guermond, P. Minev and J. Shen. An overview of projection methods for
incompressible flows. Comput. Methods Appl. Mech. Eng., 195(44):6011–6045,
2006. http://dx.doi.org/10.1016/j.cma.2005.10.010.

[22] J.-L. Guermond, R. Pasquetti and B. Popov. Entropy viscosity method for
nonlinear conservation laws. J. Comput. Phys., 230(11):4248–4267, 2011.
http://dx.doi.org/10.1016/j.jcp.2010.11.043.

[23] J.-L. Guermond and L. Quartapelle. A projection FEM for variable density
incompressible flows. J. Comput. Phys., 165(1):167–188, 2000.
http://dx.doi.org/10.1006/jcph.2000.6609.

[24] J.-L. Guermond and A. Salgado. A splitting method for incompressible flows
with variable density based on a pressure Poisson equation. J. Comput. Phys.,
228(8):2834–2846, 2009. http://dx.doi.org/10.1016/j.jcp.2008.12.036.

[25] J.-L. Guermond and J. Shen. Velocity-correction projection methods for incom-
pressible flows. SIAM J. Numer. Anal., 41(1):112–134, 2003.
http://dx.doi.org/10.1137/S0036142901395400.

[26] Y. He. The Euler implicit/explicit scheme for the 2D time-dependent Navier-
Stokes equations with smooth or non-smooth initial data. Math. Comput.,
77(264):2097–2124, 2008. http://dx.doi.org/10.1090/S0025-5718-08-02127-3.

[27] J.G. Heywood and R. Rannacher. Finite-element approximation of the nonsta-
tionary Navier–Stokes problem. Part IV: Error analysis for second-order time
discretization. SIAM J. Numer. Anal., 27(2):353–384, 1990.
http://dx.doi.org/10.1137/0727022.

[28] M. Jobelin, C. Lapuerta, J.C. Latché, Ph. Angot and B. Piar. A finite ele-
ment penalty-projection method for incompressible flows. J. Comput. Phys.,
217(2):502–518, 2006. http://dx.doi.org/10.1016/j.jcp.2006.01.019.

[29] D.D. Joseph and Y.Y. Renardy. Fluid Dynamics of Two Miscible Liquids with
Diffusion and Gradient Stresses. Springer, 1993.

[30] D. Kay and R. Welford. Efficient numerical solution of Cahn–Hilliard–Navier–
Stokes fluids in 2D. SIAM J. Sci. Comput., 29(6):2241–2257, 2007.
http://dx.doi.org/10.1137/050648110.

Math. Model. Anal., 20(2):232–260, 2015.

http://dx.doi.org/10.1137/050638333
http://dx.doi.org/10.1002/fld.1650110509
http://dx.doi.org/10.1016/j.cma.2005.10.010
http://dx.doi.org/10.1016/j.jcp.2010.11.043
http://dx.doi.org/10.1006/jcph.2000.6609
http://dx.doi.org/10.1016/j.jcp.2008.12.036
http://dx.doi.org/10.1137/S0036142901395400
http://dx.doi.org/10.1090/S0025-5718-08-02127-3
http://dx.doi.org/10.1137/0727022
http://dx.doi.org/10.1016/j.jcp.2006.01.019
http://dx.doi.org/10.1137/050648110

260 O. Axelsson, X. He and M. Neytcheva

[31] D. Kuzmin. A Guide to Numerical Methods for Transport Equations. Uni-
versity Erlangen-Nuremberg, Germany, 2010. http://www.mathematik.uni-
dortmund.de/ kuzmin/cfdbook.html

[32] H.G. Lee, K. Kim and J. Kim. On the long time simulation of the Rayleigh–
Taylor instability. Int. J. Numer. Meth. Eng., 85(13):1633–1647, 2011.
http://dx.doi.org/10.1002/nme.3034.

[33] P.L. Lions and R. Farwig. Mathematical topics in fluid mechanics. Vol. 1: In-
compressible models. SIAM Rev., 40(2):402–403, 1998.

[34] Ch. Liu and N.J. Walkington. Convergence of numerical approximations of
the incompressible Navier–Stokes equations with variable density and viscos-
ity. SIAM J. Numer. Anal., 45(3):1287–1304, 2007.
http://dx.doi.org/10.1137/050629008.

[35] S. Müller-Urbaniak. Eine Analyse dex Zweischritt-θ-Verfahrens zur Lösung der
instationären Navier–Stokes-Gleichungen. PhD thesis, University of Heidelberg,
German, 1994.

[36] Y. Notay. The software package AGMG. http://homepages.ulb.ac.be/ ynotay/

[37] R. Pierre. Simple C0 approximations for the computation of incompressible
flows. Comp. Meth. Appl. Mech. Eng., 68(2):205–227, 1988.
http://dx.doi.org/10.1016/0045-7825(88)90116-8.

[38] R. Rannacher. On Chorin’s Projection Method for the Incompressible Navier–
Stokes Equations. Springer, 1992.

[39] Y. Saad. A flexible inner–outer preconditioned GMRES algorithm. SIAM J. Sci.
Comput., 14(2):461–469, 1993. http://dx.doi.org/10.1137/0914028.

[40] J. Shen and X. Yang. A phase-field model and its numerical approximation for
two-phase incompressible flows with different densities and viscosities. SIAM J.
Sci. Comp., 32(3):1159–1179, 2010. http://dx.doi.org/10.1137/09075860X.

[41] C.T. Simmons. Variable density groundwater flow: From current challenges to
future possibilities. Hydrogeol. J., 13(1):116–119, 2005.
http://dx.doi.org/10.1007/s10040-004-0408-3.

[42] R. Temam. Une méthode d’approximation de la solution des équations de
Navier–Stokes. Bull. Soc. Math. France, 96(1):115–152, 1968.

[43] G. Tryggvason. Numerical simulations of the Rayleigh–Taylor instability. J.
Comput. Phys., 75(2):253–282, 1988.
http://dx.doi.org/10.1016/0021-9991(88)90112-X.

[44] S. Turek. Efficient Solvers for Incompressible Flow Problems: An Algorithmic
and Computational Approache. Springer, 1999.

[45] P.S. Vassilevski. Multilevel Block Factorization Preconditioners. Springer, 2008.

[46] W. Villanueva and G. Amberg. Some generic capillary-driven flows. Int. J.
Multiphase Flow, 32(9):1072–1086, 2006.
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2006.05.003.

[47] D. Wang and S.J. Ruuth. Variable step-size implicit-explicit linear multistep
methods for time-dependent partial differential equations. J. Comput. Math.,
26(6):838–855, 2008.

[48] S. Zahedi. ONumerical Methods for Fluid Interface Problems. PhD thesis, KTH
Royal Institute of Technology, The Sweden, 2011.

[49] K. Zhao. Large time behavior of density-dependent incompressible Navier–Stokes
equations on bounded domains. J. Math. Fluid Mech., 14(3):471–483, 2012.
http://dx.doi.org/10.1007/s00021-011-0076-8.

http://dx.doi.org/10.1002/nme.3034
http://dx.doi.org/10.1137/050629008
http://dx.doi.org/10.1016/0045-7825(88)90116-8
http://dx.doi.org/10.1137/0914028
http://dx.doi.org/10.1137/09075860X
http://dx.doi.org/10.1007/s10040-004-0408-3
http://dx.doi.org/10.1016/0021-9991(88)90112-X
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2006.05.003
http://dx.doi.org/10.1007/s00021-011-0076-8

	Introduction
	The Navier–Stokes Equations with Variable Density
	Formulation of the coupled system
	Stability properties of the underlying equations

	Time Discretization, Operator Splitting Scheme and Linearization
	Time discretization scheme
	Operator splitting and related splitting error

	Regularization/Stabilization Issues
	Block-Matrix Structure and Preconditioning
	Numerical Illustrations
	Concluding Remarks
	References

