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ABSTRACT

One of the simplest schemes of the degenerate matrix method with nodes as zeroes of
Chebyshev polynomials of the second kind is considered. Performance of simple iterations
and some modifications of Newton method for the discrete problem is compared.

1. INTRODUCTION

Initial value problem of nonlinear systems of differential equations has many
important applications to different practical tasks. In practice majority of
these problems can be solved only numerically. Therefore, numerical methods
are considered in the literature very often, for example, volumes [1; 2]. They
contain bibliography of at least 800 titles. In [3] DM-method (Degenerate
matrix method) as the method for numerical solving of the above-mentioned
problems is considered. DM-method is based on the choice of nodes in the
standardized interval [—1,1] and on the use of two types of matrices for the
discretization of the differential problem: matrices for derivatives which are
always degenerated and their pseudo-inverses. This paper is devoted to DM-
method with nodes as zeroes of Chebyshev polynomials of the second kind and
with specially selected constants in the pseudo-inverse matrix for a derivative.
This discretization for problems of differential equations leads to very simple
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computing schemes and can be realized by computers easy. In addition, these
computing scheme can be generalized applying the Newton method instead
of simple iterations for the discretized equation. As example an application
of the method to van der Pol’s equation is considered

2. SIMPLEST DM-METHOD WITH CHEBYSHEV POLYNOMI-
ALS OF THE SECOND KIND

The problem

Yt =o, tefa) 2.1)

where y € R™, a € R™, f = (f1, f2,---, fm), can be solved using the multi-
step procedure on subintervals [t;,t;11],a = tg < t; < ... < t; = b. Each of
problems on the subinterval can be represented by the substitution

t=1t; + 05hl($ + 1), h; = tiv1 — t; (22)
as a problem on the standardized interval [—1, 1]:

dy h
— =_F -1) = —1,1]. 2.
Y = P Fy), y(-1) =6,z €[] (23)
Here h = h;; 8 = B; = y(t;) and F are vectors obtained by the substitution
(2.2) in (2.1).

We choose nodes zj, on the interval [—1,1] as the zeroes of Chebyshev
polynomial Uy (z) of the second kind:

k=1,2

™
L N 2.4
N+l 2 (24)

Tp = — COS

This system of nodes can be extended by the endpoints £1 simply putting
k=0and k= N+1in (2.4). In [3] one of pseudo-inverse matrices with nodes
(2.4) is given, which is suitable for non-stiff problems. For stiff problems
DM-method is useful only theoretically since it requires very long time for
calculations. Now we want to present one of DM-methods with nodes (2.4)
which have very simple pseudo-inverse matrix. It is possibly the simplest one
among all of them for DM-method.
This scheme for solving (2.3) with such matrix is following:

Y[N,m] = Yo[N,m] + gBNF[N, mj, (2.5)

B
y)=0+3 > by F (@, y(on)- (2.6)
k=1



Degenerate Matriz Method 53

Here By is the N x N matrix with elements

N .
4 1 sin? mTn .
= — =1,2,... N.
bk N+1 z::n N+1 n2N+2’J’k S

(2.7)
(2.7) is correct for j =0 and j = N + 1, too.
Y, Y, and F are matrices with elements: yi; = y;(zx), y,(c(;.) =y;(-1), Fy; =
F(a:k, (zx)),k=1,2,...,N;5=1,2,....m

The norm
N

IBy|| := mJaxZ|bjk| <2 (2.8)
k=1

The inequality (2.8) is correct for any N.

Proof. We are starting from DM-method with nodes z = — cos == N+1’ k=
0,1,...,N and pseudo-inverse matrix BN_H in the general form [3]. Then
elements b;; have the representation

P 1 Y pNa(7)

b = { / dr +¢;| , oy (@) = (14 2)Un (@), (29)

! P (k) 1 T~ Tk !

where ¢; are constants, Uy are Chebyshev polynomials of the second kind.
We choose ones according to the conditions: bor = 0, k = 0,1,...,N; and
bjo =0, j = 1,2,...,N. Then we obtain co = 0, and ¢; = — [ Un(7)dr.
Denoting elements of B ~N+1 with such constants by b leads to

1 ¥ UN(T)
Un(zr) Jo1 7 —xp

bir = dr, j,k=0,1,...,N. (2.10)

Let By be the matrix with bz, 5,k = 1,2,...,N. Computing the integral
by means of the classical Christoffel-Darboux formula leads to (2.7). Now we
define byy1,x = bji if j = N + 1. So we have obtained (2.6). The equation
(2.5) follows from the scheme of DM-method. The inequality (2.8) follows
from properties: by >0ifk=1,2,...,N. &

Remark. Instead of (2.5) and (2.6) only one equation
h ~
Y[N +2,m] = Yo[N +2,m] + §BN+2F[N +2,m] (2.11)

can be used, where the elements of the matrix B N+2 can be computed by (2.7)
with j,k = 0,1,..., N + 1. The equation (2.11) can be solved by iterations,
too. In this case ||Byy2|| = 2 for any N.
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Method using (2.5) and (2.6) is a special case of Runge-Kutta method with
very simple nodes and matrix By . The N as a number of stages can be
large on each step, too. A choice of nodes as zeroes of orthogonal polynomials
gives a nonsaturated approximation for functions. Therefore, the use of DM-
method with large N is very reasonable because such N allows us to decrease
computing errors of the method rapidly.

Using these matrices with different values of N in the same subinterval of
(2.3) we can control a total precision of the method simply and directly.

3. APPLICATION OF NEWTON METHOD

Simple iterations for solving (2.5) in the case of small enough h guarantee
a high precision. But these iterations with a small A and large numbers of
stages IV require a long time for calculations by the multi-step procedure.
Numerical experiments show that ||BX|| for each fixed N decreases rapidly
if k tends to infinity. Therefore, it is appropriate to use Newton method or
its modifications instead of simple iterations for solving of (2.5) . In order to
formulate these methods we will consider some operations with matrices. We
will denote matrices by A, B,C, ..., but matrix vectors by .&, ]§, é, -

DEFINITION 3.1. Let A be an N X n matrix. We define the operation &)
between the matrix vector B having IV matrices of type n x k as components
and a matrix A in the following way:

BX)A=C, (3.1)

if Cis the N x k matrix the j-th column of which can be obtained multiplying
the matrix B; as the component of B with j-th column of A as with N x 1
matrix.

Analogously the multiplying of a matrix A with a matrix vector having k
matrices of the type n x IV as components can be defined:
A®B = C if C is the n x k matrix each row of which can be obtained
multiplying the j-th row of A as 1 x k matrix with B; as the component of
B.

DEFINITION 3.2. Let A and B be matrix vectors, having the same number n
of components. Then we define

AxB=C:=(A1B1,A3B,,...,ALB,), (3.2)
where A;B; are matrix products.

We will use also notations

AT = (AT, AT),E=(E,...,E); A" =(A]!,...,A ),
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—

if Aj_1 exist for each j = 1,2,...,n. It is obviously that AxA1=AK1xA =
E,(A«B)T =BT« AT, (A,A,...,A)QB = AB,
BR(A,A,...,A)=BA, AQE=E®A = A, etc.

We formulate still one property which will be necessary below.

Proposition 3.1. Let us consider x, @), . as the operations of taking a product
of: 1) two matriz vectors; 2) a matriz with a matriz vector or a matriz vector
with a matriz; 3) two matrices, respectively. We assert that these operations
considered as one generalized multiplication are associative. For example,

ARBE)C)=(A+B)K)C,
ABRXC) =AXB).C,
A(CQB) = (AC)X) B, etc.
A proof of the proposition can be obtained by simple verifying of all possible
cases.

Now we will use Newton method for solving the equation (2.5). Denoting
for simplicity Y[N,m] =Y and F[N,m] = F(Y), we have instead of (2.5)

h
d(Y)=Y-Yy - §BNF(Y) =0. (3.3)
The Frechet differential of ® is
h .,
d®(Y) = AY — SBy.AY QR F(Y), (3.4)

where F"(Y) is a matrix vector with components, which are transposed Jacoby

matrices
D(F17F27-"7Fm)

D(y1)y27"'>ym)

Accordingly to the well known Newton method iterations for equation ®(Y) =
0 are d®(Y™) = —®(Y™), n=0,1.... Using (3.4) and (3.5) we have

at r=uxp,k=1,2,...,N. (3.5)

YD = Yo+ DBy () 4 DBY () Y0 @ F (V). (36)
Unfortunately, a direct application of (3.6) requires solving of the linear alge-
braic system of kind

h —
YO - SBNY T QF(Y™) = e (Y ™) (3.7)

for each n = 0,1,.... It is difficult in practice. We suggest three rough
methods for solving (3.7).
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Algorithm 3.1. Replacing Y("+1) in the right side of (3.6) with
h
Z( ) — v, 4 §BNF(Y(")) ~ YD (3.8)
we obtain the following computing scheme for iterations:

h
ZD) =Y, + §BNF(Y(")),

h — n
YOz 4 2Bz - YOI QF (YY), (39)

Algorithm 3.2. Replacing AY ™ =Y+ _y () roughly with AY (1) =
Y — Y1 we obtain the following computing scheme:

h
YO =Y, Y =Y, + §BNF(Y(0)),

h h _
YD =y, + §BNF(Y(“)) + §BN(Y(“) —Y®E ) Q) F (Y™), (3.10)
n=12...

Algorithm 3.3. In this case we replace ﬁ’(Y(n+1)) in (3.6) with ﬁ’(YO) and

obtain Y ("1 directly from the system of algebraic equations
(n+1) h (my 4 (1) _ (0] QB
Y = Yo + 5 BNF(Y™) + OBN[Y ~ YR F(Yo). (3.11)

4. NUMERICAL EXAMPLES

The above mentioned algorithms were applied to the van der Pol’s equation
written as a system

Yi =v2, vy =€l(1—u)y2 —m1l (4.1)

with initial conditions

and € = 10.
Calculations were carried out with different step sizes h and numbers N
of nodes on the standardized interval [-1,1]. The obtained numerical results



Degenerate Matriz Method o7

were compared with ones in the case of simple iterations for (2.5). We can
make the following conclusions.

The Algorithm 3.1 converges approximately two times faster than the simple
iterations of (2.5) and gives the same results. However, the computing time of
all calculations is not reduced very much. It is because each iteration requires
two multiplications with the pseudo-inverse matrix in (3.9) instead of one in
(2.5). The observed efficiency decreases for small step sizes and large numbers
of nodes.

The Algorithm 3.2 has a rate of the convergence lower than simple iterations
in (2.5) approximately 1.5+2 times, and it requires a bit smaller step size.
Obviously, this method can not be recommended instead of simple iterations.

The Algorithm 3.3 is the standard modification of Newton method. This
allows greater step size and converges faster than simple iterations do. How-
ever, the precision is lower than in the case of simple iterations and it can
not be increased choosing a larger number of nodes. This method can be
recommended in cases when the step size for simple iterations is too large to
achieve the convergence of simple iterations.
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ISSIGIMUSIU MATRICU METODAS NETIESINIU
DIFERENCIALINIU LYGCIU SPRENDIMUI

T. CIRULIS, O. LIETUVIETIS

Siame darbe toliau nagrinéjamas iSsigimusiy matricy metodas netiesiniy diferencialiniy
lygciy pradinio uzdavinio sprendimui. Sudarant metodo algoritma naudojami antrojo tipo
Cebyéevo polinomy nuliai bei specialiai parenkamos konstantos aproksimuojant iSvestinés
kvaziatvirkstine matrica. Metodas pritaikomas dviejy tipy iteraciniams algoritmams: pa-
prastyjuy iteracijyu ir Niutono metodams. Pateikiami skaitinio eksperimento rezultatai ir

naujasis metodas palygintas su populiariaisiais skaitiniais algoritmais.



