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ABSTRACT

The approximations of the nonlinear heat transport problem are based on the finite
volume (FM) and averaging (AM) methods [1,2]. This procedures allows reduce the
nonlinear 2-D problem for partial differential equation (PDE) to a initial-value problem
for a system of 2 nonlinear ordinary differential equations(ODE) of first order in the time
t or to a initial-value problem for one nonlinear ODE of first order with two nonlinear
algebraic equations.

1. MATHEMATICAL MODEL

We shall consider the nonlinear initial-boundary value problem in the follow-
ing form:

Ou /0t + voOu/0x = d(\Ou/0z)/0x + F(z,t,u),
z € (0,1), t >0,

A0u(0,t)/0x = fi(t,u(0,t)), ¢>0,

Adu(l,t) [0z = f2(t,u(l,t)), t>0,

u(z,t) =u’(z), =z €][0,1],
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where u(z,t), u®(x) are the temperature, vy is the transfer velocity (vo =

const), [ is the thin of the plate (I << 1), A is the conductivity (A = const).
The function F' is the nonlinear heating source arising in chemical reactions,
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for example in the form
F = AHc(u)exp(—E/(Ru)),

where ¢, E, H are the concentration, activation energy of the burning sub-
stance and heat of combustion reaction, R is the universal gas constant
8.31441J/(K,mol), respectively. A is the ”pre-exponential” Arhennius factor.
The nonlinear functions fi, f2 in boundary conditions (1.2), (1.3) describe the
radiation from the heaters and the convection, for example

f1 = CK()(U — To) + 600’(U4 — 03),

fo=—ai(u—T)) —eo(u® — 0%),

where ag, a1 are the convective heat transfer coefficients, Ty, 77 are the tem-
perature of the environment, 6y, #; denote the temperature of the heaters,eg, €1
are the coefficients of emissivity, o is the Stefan-Boltzmann constant
5.6703108W/(m?.K*).

In order to derive the approximate equations we write the PDE (1.1) in the
following self-adjoint form

oW*(z,t)/0x = G*(z,t,u), (1.5)
where W* = Xe(z)0u/0x is the general flux-function,
G* =e(x)G(z,t,u), e(x)=-exp(—vo(z —b)/A), b= const,

G = 0u/0t — F(z,t,u).

2. THE FM METHOD

To derive finite-difference equations associated with the grid points z = 0, and
x = we integrate the differential equation (1.5) fromz =0tox =1/2 (b=
0) and from z =1/2 to & =1 (b =1). Therefore we have the integral forms
of the conservation law to the intervals (0,1/2) and (1/2,1).

The nonlinear 2-point difference equations are in the following form:

X~ g(B) (u () — uo(t)) — f1(t,uo(t)) = Ro, (2.1)
fo(t,ur(t)) = N~ g(=B) (ur (t) — uo(t)) = Ry, (2.2)

where

Uo(t) = U(O)t)a Uy (t) = U(l,t), ﬁ = UOZ//\;
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9(8) = B/(exp(B) — 1) = 1 - /2 + °/12 = 3*/720 + O(5°),

R; = | K(z)G(z,t,u(z,t))dz, j=0,1,
0

Ko(z) = exp(B(1 — /1)) = 1)/ (exp(B) — 1) € [0,1],
K () = (1 — exp(=Px/1)) /(1 — exp(=P)) € [0,1].

For the given function G the equations (2.1), (2.2) are the exact approxima-
tions for unknown functions wg(t),u(t). For the approximation of the right
side integrals Ry, R; we consider the following quadrature formulas:

R[) = l(AoGo + AlGl) + 7'0(77), (23)
Ry = (A5Go + ATG1) +11(n),

where the error terms are given by

ro(n) = 0.50°G/9z?|,=,I* Eo,
ri(n) = 0.50°G/0x?|,=y1” Eg, € (0,1),
G’0 = G(Ovt7u0(t))7G1 = G(l t U’l( )) 77 (0 )
Ao = g3(8), A1 = 92(8), A§ = 92(=P), AT = g3(=0),
Eo = 94(8), E5 = 94(=0),
92(8) = B72(1 = (1 + B/2)9(B))

=1/6 — 3/24 + 32/720 + 3%/1440 + O(B*),
g93(8) = 7" = B72(1 = (1= B/2)9(B))

=1/3— (/24— ?/720 + 5%/1440 + O(B*),
94(8) =722 -8 - (2-5/6)9(9))

= —1/12+ 3/60 — 3°/3360 + O(5°).

In the limit case for vg = 0 we have 8 = 0. Therefore for the approximate
solutions yo(t),y1(t), deleting the error terms r we have from (2.3), (2.4) the
following system of nonlinear first order ODE:

go = F(0,t,50) + (IA)" N (y1 — yo)g1(B) (2.5)
—g3(=B) f1(t,y0) — 92(B) f2(t, y1)], '

g1 = F(l,t,y1) — (1A) T N (51 — yo)gr (=B) (2.6)
—93(8) f2(t,y1) — g2(=B) f1(t, y0)], ’

where

91(B) = g3(B)g(B) + 92(8)g(—B)
= 6711 —g(B) =1/2-B/12+ 3 /720 + O(8°),
A = g3(8)g3(=0B) — 92(3)92(=B)
= B750.5 - g1(8)) = 1/12 — 8%/720 + /30240 + O(5°).
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The functions g, g1, g2, g3 are positive monotone decreasing and they have the
following properties:

g(—o0) = +o00, gi(—00) =1, g2(—00) = g3(—00) = 0.5,
g](OO)ZO, ]:0)]—72>37 9o = 9.

The function g4 is negative monotone increasing and it satisfies the conditions
ga(—o0) = —1/6, gs4(o0) =0,

and the error terms can be estimated as
()| < Mal?/12, j=1,2,

where [0?G/0x?| < My = const. The system (2.5), (2.6) must be solved with
the initial conditions

Y0(0) = UO(O): y1(0) = Uo(l)-

3. THE AM METHOD

Using the parabolic distribution for the approximation of the function y in
the = direction

y(z,t) = §(t) + o) (@l ™" — 1/2) + (1) (2*17% — 1/3) (3.1)

we integrate equation (1.5) from z = 0to z =1, (b =1/2) and divide this
expression by [:

l_1[6$p(—ﬁ/2)f2(t, U(l, t)) - 61’p(ﬁ/2)f1 (t> U(O, t))] = R3) (32)
where l
g(t) = 1—1/0 y(z, t)dz

is the average value,

1
Ry=1" /0 exp(—B(xz —1/2)/1)G(z,t,u(x,t))d.

At every time moment ¢ the unknown functions §(t),y(¢t) can be obtained
from boundary conditions (1.2), (1.3) and from expression (3.1) in the form
of two nonlinear algebraic equations:

NTHS(t) = fult, yo(t)), (3.3)
ML) + 29(0)) = folt (1), (5.4)
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where

yo(t) = g(t) — o(t)/2 —~y(t)/3, wi(t) = G(t) + d(t)/2 + 2v(t)/3,
v =3(yo +y1 — 29), 0 =67 — 4yo — 2y1.

We can represent integral R3 in the form

l
R3 = Aolil/ Gdx +lB()aG/aZ'|z:T,, ne (O,Z),
0

where
A[) = Qﬁilsh(ﬂ/2), BO = Ao/ﬁ — ﬁilch(ﬁ/2)

Therefore we have the initial-value problem for nonlinear first order ODE :

y(t) = F(t,y(t)) + 17 (9(8) f2(t, 91 (t)) — g(=B) f1(t, yo (1)),
§(0) = 17" [ u®(z)da.

This problem must be solved together with algebraic equations (3.3). The
simplest form of the AM-method yields nonlinear ODE (3.4) with y1 =yo = §

(6 =v=0).

(3.5)

4. NUMERICAL RESULTS

We consider the process of glass fabric manufacturing (with thickness | =
0.1mm) at the glass fiber plant in the Valmiera city (Latvia). An oil must
be removed by heating and burning process[1,3]. The initial-boundary value
problem for nondimensional system of PDE (z = Zl,¢ = éco, u = @by, vo =
0,To = T1,ap = a1, € = €1, the "wave” symbol is deleted) is in the following
form:

Ou/Ot = a10%u/0z” + arc ex(u),

Oc/0t = —agc ex(u),

f1(t,u(0,)) = az(u*(0,t) — 1) + 0.5a3(u(0,t) — ay),
f2(t,u(1,t)) = as(as — u*(1,t)) + 0.5a3(as — u(1,t)),

u(z,0) = ag, c(z,0) =1, (4.1)

where

ex(u) = explag(l —u ™)), ay = N2 = 160.415, ay = oeob /I = 1.72,
as = 2a0/l = 0.06, as = Ty/0y = 0.8842, a5 = (61 /6y)* = 0.5635,

ag = u’ /By = 0.2698, a; = coH Aexp(—E/(Rfy))/0 = 51.26,

as = Aexp(—E/(Rfy)) = 128.68, a9 = E/(Rfy) = 17.14,
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co is the initial concentration of oil. The ODE for the concentration of oil has
the form

é(t) = —ag c(t) ex(u), (4.2)

where ¢ = ¢(0,t) = ¢o(t) and ¢ = ¢(1,t) = ¢ (t) for the FM method, ¢ = &(t)
for the AM method.

The numerical solutions of the stiff problems of ODE (2.5), (2.6), (3.4),
(4.2) are obtained with the routines ”gear”, "mgear”, "lsode” of "MAPLE”.
Figure 1 shows typical results of calculations: the fabric temperature rises to
the maximum value and the oil concentration is falling to zero over a ”burning
zone” in the time interval [0.26, 0.31].

In the table 1 we can see the numerical values of temperature yo(t), y1(t)
in this zone, obtained by the FM and AM.

Figure 1. The graphics of the temperature § and the concentration c.

The values of the concentration ¢ are the following

Table 1.
The values of temperatures for the FM and AM.

t yo(AM) y1(AM) Yo(F' M) y1(FM)
0.26 0.8754 0.8731 0.8769 0.8745
0.27 0.9470 0.9448 0.9526 0.9501
0.28 1.1929 1.1907 1.1932 1.1910
0.29 1.1551 1.1530 1.1550 1.1527
0.30 1.1244 1.1221 1.1240 1.1218

0.31 1.0991 1.0970 1.0986 1.0963
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1) ¢(0.26) = 0.8457,¢,(0.26) = 0.8538,¢(0.26) = 0.8532,
2) ¢0(0.27) = 0.6616,¢;(0.27) = 0.6761,¢(0.27) = 0.6824,
3) ¢<107%, t>0.28.

For testing the methods we consider only heating process (A = ag = a7 =
0). Then the temperature distribution u(z,t) can be obtained from (4.1) by
using the Laplace transform for value ¢ in the form of a sequence of functions
um(1,t),m = 1,2,3,..., which are the solutions to nonlinear the system of
Volterra integral equations of the second kind.

The results of the comparison are given in the table 2 (ug,u; are the exact
values by m = 6).
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NETIESINIQ SILUMOS PERNESIMO PLONOSE
PLOKSTELESE MATEMATINIS MODELIAVIMAS

A. BUIKIS, H. KALIS

Darbe sprendziamas netiesinis silumos pernesimo uzdavinys. Uzdavinio specifika yra ta,
kad Silumos perneSimas vyksta labai plonose plokstelése, todél nagrinéjamas vienmatis api-
bendrintas modelis. Si redukcija atliekama, baigtiniy tiiriy ir vidurkinimo metodais. Gautoji
dviejy netiesiniy paprastyju diferencialiniy lygciu sistema yra sprendziama skaitiskai. Is-
nagrinétas ir alternatyvus varijantas, kai po redukcijos gaunama viena netiesiné paprastoji
diferencialiné lygtis bei dvi papildomos algebrinés lygtys.

Table 2.
Comparison of the numerical results.

t yo(AM) yl(AM) yo(FM) yl(FM) uo (75}
0.1 .5330 .5299 .5318 .5295 .53262 .53044
0.2 7412 .7388 .7408 .7385 .74106 .73889
0.3 .8621 .8603 .8622 .8599 .86202 .85987
0.4 9139 9123 9139 9116 91365 91150

0.5 9321 .9309 9322 19299 .93208 92993




