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ABSTRACT

In this paper three analytical solution for 2D temperature distribution in the wall and fin
are considered solution. The results of calculations are compared with the analytical.

1. INTRODUCTION

Approximate analytical solution are very useful for heat transfer problems in
systems with the fin. Heggs and Stones [4] in 1980 gave an analytical solution
for 1D model of longitudal (and annular) fin assemblies. Buikis [2] in 1995
constructed an analytical solution for 2D model. He developed with original
technique: the conservative averaging method. Weakness of this solution was
continuity of the temperature only in regard to the averaged values on two
lines: those between the fin and the wall and the upper and lower parts of
the wall. Malik, Wood and Buikis [5] modified the conservative averaging
method and achieved the continuity of the temperature for all points of the
wall. Buike and Buikis [1] and Buikis and Buike [3] gave a modification [1]
and generalization [3] of the conservative averaging method. The approximate
analytical solution obtained in [1], [3] is continuous in the whole region.

The aim of this paper is to compare, both analytically and numerically,
three solutions from [1], [2] and [5].

I This work was supported by Latvian Council of Science under grant 96.0779.
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2. STATEMENT OF THE PROBLEM

We consider a periodical system with a rectangular fin whose elements, in
dimensional arguments, are a wall {Z € [0,A],§ € [0,B + R]} and a fin
{z € [A,A+ L],j € [0,B]}. Here 2B is the fin thickness, 2R is the distance
between two adjacent fins; L stands for the fin length, and A denotes the wall
thickness. We use the dimensionless arguments
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and the dimensionless temperatures
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where Uy, and U, are the temperatures of surroundings on the left of the wall
(at £ < 0) and on the right of the wall, respectively.
The parameters of boundary conditions are as follows:
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where ko (k) is the heat conduction coefficient for the wall (relative to the fin);
ho(h) is Newton’s coeflicient of heat exchange with the surroundings on the
left (right) sides.

The stationary heat process in such a system is described as follows:

6;520 a;;‘)zo, 0<z<d 0<y<l, (2.4)
6;7[5+8;712J:0’ §<x <+, 0<y<b, (2.5)
%Jrgg(l_%):o, x=0,0<y<1, (2.6)
%§+ﬂ¢%:m x=6b<y<l, (2.7)
g_ly]+ﬁU:0, §<z<d+l,y=0, (2.8)
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or



Sitmulation of steady — state heat process for the rectangular system 35

% :% =0, 0<az<9, (2.10)
Y ly=0 ) y=1
ou =0, d<z<d+|, (2.11)
oy =0
oU ou
Uolz=s-0 = Ulz=s1+0, B 8—0 = fo 7 , O<y<b (212
T r=6—0 € r=0+0

3. SOLUTION FOR THE FIN

We will seek a solution to the problem for the fin in the form:
U(z,y) = fo(x) + (e = 1) fu(z) + (L — e ) fo(z), p=b""1, (3.1)

where f;(x), i =0, 1,2 are unknown functions. Now we will define the mean
integral value of the function U(z,y) in the y-direction:

b
u@)=p [ Uy (3:2)

The boundary conditions (2.8), (2.11), and equality (3.2) allow us to elimi-
nate all f;(z) from(3.1).This means that the representation of solution U (z,y)
for the fin can be reduced to the form:

Ulz,y) = u(x)®(y), (3-3)

where
sinh(1) 4+ Bb(cosh(1) — cosh(py))

B(y) = sinh(1) + Bb(cosh(1) — sinh(1)) *

(3.4)

We can find the differential equation for u(x) by integrating the basic equation
(2.5) and using boundary condition (2.8) and (2.11):

d2
dz(f) — iPu(z) =0, s<z<d+I, (3.5)

where p? = %@(b). We can employ the integrated in the y - direction bound-
ary condition (2.9), which allows us to write a solution to equation (3.5) in
the form with one arbitrary constant C; :

u(z) = Cr(pue!® +e 1), (3.6)
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Here
_ =B oue
e ) 3.7
p+ B 3.7

It means that the solution for the fin can be written in the form:

%51

U(z,y) = Cy(ure"® + e *5)®(y). (3.8)

Later, we will find constant C; from the conjunction solutions for the fin and
the two mentioned parts of the wall.

4. SOLUTION FOR THE UPPER PART OF THE WALL

We express the exponential approximation for the wall in the z direction in
the form:

Uo(z,y) = go(y) + (7~ — 1)gi(y) + (1 — ¥ D)go(y),  (4.1)
where d = 671 .

Next, we define the integral mean in the z-direction:

5
uo(z) = d/o Uo(z,y) dz. (4.2)

The boundary condition(2.6) and equality (4.2) allow us to obtain the follow-
ing expressions for g1 (y) and g2 (y):

9i(y) = (—1) (—aigo(y) + buo(y) — d;),

Here
A B; D; .
G,Z'ZE, bZ:E, dZ:— 7/:1,2.

Here K1 = e 1(2+ 83d(e — 1)(3 — ¢)),
Ay =e 1+ 836(e—2), Bi=e'(1+083(e—1)), D;=e'B39,
Ay =e+ 06, Ba=e+fBy6(e—1), Dy=p35(e—2).
Now, can rewrite the representation (4.1) for U(z,y) in a form:

Us(z,y) = (14 ("7 = 1ar = (1 - D)az)go(y) + (1 — e?“=)b,
(M) — 1)y ug(y) + (€70 — 1)y — (1 - el D) dga.3)

Further transformations are associated with conditions on the right border
x = 0 of the wall. These conditions are different for the interval [0,b] and
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for the interval [b,1]. We require now that representation (4.3) fulfills the
boundary condition (2.7). This gives

— _ By _ Do
90(y) = bouo(y) — do, bo = Ky’ do = Xy’ (4.4)

Here
KO = AQ — Al +ﬂ06K1 =€ — 671 + 2ﬂ86671 +ﬂ06K1,
By=DBy— By =e (e =14+ 83(e—1)?),
DO = D2 - D1 = ﬂg&(e - 6_1 - 2)

The expression (4.4) allows representation (4.3) to be rewritten in the form

Uo(z,y) = (bo + (arbo — b1) (e~ = 1) + (b — azbo) (1 — e @~ ))uo(y)
—do + (dy — aydo) (e~ — 1) + (agdy — dy)(1 — 4==%)), (4.5)

Similarly to the fin case we can find a differential equation for the unknown
function uo(y) by integrating the basic equation (2.4) in the z-direction and

r=

using expression (4.5) to find } % |x:g. This yields

d2
T 2uy = @, be<y<l, (4.6)

<
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0, (4.7)
where
K2 = 20725 (B0 + B)dsinh(1) + 260330 (cosh(1) — 1)),
Oy = 62((dy — ardp)(e — 1) + (dz — azdp)(1 — e™1)).
The general solution of equations (4.6), (4.7) is
uo(y) = Cy cosh(k(1 —y)) + Uz, Us = k™20, (4.8)

with an arbitrary constant Cs.

5. SOLUTION FOR THE LOWER PART OF THE WALL

First, we integrate the basic differential equation (2.4)

d?uo(y) U, |~ _

1
dy? 0 Oz

z=0



38 M. Buike

Next, we require fulfillment of first conjugation condition (2.12). From (3.8)
and (4.3) it follows that

9o(y) = C1(1 + p1)(Po — @1 cosh(py)), (5.2)
Where

®; = ((8b)""sinh(1) 4 cosh(1) — sinh(1))™*,
®o = ((Bb) ' sinh(1) + cosh(1))®;.
We can substitute now expression (5.2) for go(y) in representation (4.3) and

calculate the derivative of Uy(z,y) at the point = J. Let us substitute both
expressions into equation (5.1). This gives

d*u
dy20 - )\2U0 = —D3 - 0163’[) + Cl @3’1 COSh(py). (53)
Here
0 2 0
s _ Bole—1) 28, .
= D3 = i — (I)ia = 715
A €5K1 ’ 3 €6K1’ 637 63 ‘ 0
_ (Aie—Ase (1 + ) Bop

63 - 62K1 /66 (]' ul)

The solution of equation (5.3) with boundary condition u (0) = 0 reads as
follows:

uo(y) = Cs cosh(Ay) + C1Us + C1Uq cosh(py) + ds, (5.4)
where
O30 O3.1 Ds
U3:77U4:p2_>\27 BZV-

Again, C3 in equation (5.4) is a free constant.

6. THE ESTIMATION OF FREE CONSTANTS C4,C>,C3
First, we require that the temperature at the right upper corner point (0, b)
of the fin equals that of the upper part of the wall at the same point. Then
we obtain from (3.8), (4.4), (4.8):

Ci(e ™ + 11 e")®(b) = Cabg cosh(k(1 — b)) + Usby — d. (6.1)
The next two conditions will be associated with the contact line between the
upper and the lower parts of the wall. Coincidence of the average temperatures

gives from (4.8) and (5.4):

Cy cosh(k(1 — b)) + Uz = C5 cosh(Ab) + C1(Ug cosh(1) + Us) + ds.  (6.2)
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Coincidence of the average fluxes on the line y = b yields the condition:
—Csksinh(k(1 — b)) = C3Asinh(Ab) + C1Usp cosh(l). (6.3)

Hence we have a system of three linear algebraic equations. This means that
all these free constants can be obtained and thus the approximate analytical
solution of the problem (2.4) — (2.12) is found uniquely.
We can easily show that the function Uy(z,y) is continuous on the line
y="b,ie.
lim U = lim U .
Jim Uo(z,y) = lim Uo(z,y)
In reality, we have the representation (4.3) for all points of the wall. It follows
from (5.2) and (6.1) that go(y) is continuous at the point y = b. In turn, it
follows from (6.2) that ug(y) is continuous at the point y = b.

7. THE APPROXIMATE SOLUTION FROM |2]

The first approximate analytical solution based on conservative averaging
method was obtained by Buikis [2]. The solution for the fin and the up-
per part of the wall was practically the same as described above. In turn, the
solution for the lower part of the wall was constructed in a different manner.

Representation (4.1) together with boundary conditions (2.6) and (2.7)
makes it possible to find a relation between g;(y) and go(y) for upper part of
the wall as

91(y) = —v90(y) + T, (7.1)
where
_ BYde+ Bod(1 + Bo(e — 1))
S (e=1)(e+1+836(e—1))"
Buikis assumed in paper [2] a relation similarly to (7.1) for the lower part
of the wall

(7.2)

91(y) = —790(y) + T, (7.3)

with T} being unknown.

Relation (7.3) together with boundary condition (2.6) allows us to exclude
91(y) and g2(y) from representation (4.1). After integration in the z-direction
this representation gives us the relation:

uo(y) = ¢190(y) + To. (7.4)

Here
1+ 806(e —2)
1+ 8%85(e—1)

Y2+ B30(e —1)(3 —e))
1+ 336(e—1) ’

®1 +
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_ B — 2+ 80— B —eNT1

& 1+ 30(e—1)

The integrable equation (2.4) was solved in regard to go(y) in the form:
go(y) =Cs COSh(thy) + T3, (76)

where

o (=1 (et 1+205(e—1) - B0
TR T Ae - @+ Ade— DB =€)

(e+1+2808(e — 1)1 — B35
v(e+1+263d(e —1)) — 436

T5 =

Now, we have four unknown constants C,Cy,C3 and T;. To define them we
use first equation (6.1). The equation (6.2) due to (7.5), (7.6) transforms into

C5 cosh(k(1 — b)) + Us = (C3 cosh(k1b) + T3)p1 + To. (7.7)
It is easy to see that equation (6.3) takes the form:
—Csksinh(k(1 — b)) = Cs3k1¢7 sinh(k1b). (7.8)

As the last relation, the author in [2] uses a requirement, following from second
condition (2.12) on the conjugation of average fluxes:

/ 8 [" ol
Bou (6) =+ | —— dy,
ou (9) bJo Oz |,_s5_,
which can be rewritten as
sinh(xk1b
Clﬂgu(ule“‘s — e_’“s) = (03% +T3)Bpa — 1o, (7.9)

where

_yle=1D(e+1+B36(e — 1)) — Bode
e T+ 598 — 1) !

(e—1)(e+ 14 B35(e —1))T1 — BYde

Ve = 1+ 3%3(e — 1)
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Table 1.
Assembly temperature (C°) from [1].

y/x 0.000 0.195 0.391 0.586 0.586 1.260 1.934 2.608

1.000 73.62 72.15 71.09 70.32
0.714 73.53 72.05 70.99 70.23
0.428 73.24 71.76 70.69 69.94
0.142 72.77 71.27 70.20 69.44

0.142 72.77 71.27 70.20 69.44 69.44 48.67 39.12 36.08
0.094 72.62 71.14 70.14 69.50 69.50 48.70 39.14 36.09
0.048 72.53 71.06 70.10 69.54 69.54 48.72 39.15 36.10
0.000 72.51 71.04 70.09 69.55 69.55 48.72 39.16 36.10

8. THE APPROXIMATE SOLUTION FROM [5]
The paper [5] is based on the ideas of [2], but with one important distinction:

for the lower part of the wall for Up(x,y) there was given a representation in
the y — direction (with the boundary condition (2.11) already fulfilled)

Uo(z,y) = ho(x) + 2(cosh(

SRS

) — 1)ha(z). (8.1)

The basic equation (2.4) was integrated in the y-direction using integrable
representation (8.1). This gives:

d*h d*h 1

W; + 2(sinh(1) — ”W; + sz sinh(Dhy(r) =0, 0<z <.

The function h; (z) was determined from the temperature continuity condition
on the liney =b:

_ Uo(2,b+0) = ho(x)

~ 2(cosh(¥) - 1)

hi ()

The three free constants Cy,Cy and C3 was found from the requirements:
continuity of the temperature and flux on the 1 ine z = § and of the flux on
the line y = b.

9. NUMERICAL COMPARISON OF THREE SOLUTIONS

To illustrate the above solutions, the assembly is taken to be as in [4], [5] of
mild steel with k = ko = 45W/mK, ho = 266.5W/m?K and h = 671.5W/m?K.
Dimensions for the reference model, in m are as follows: A = 0.368-10"2, L =
0.127107', B =0.445-10"2 and R = 0.2695 - 10~ 2. Temperatures of the sur-
roundings are (in C°) : U, = 26,U, = 121.

It is easy to see that [2] gives the poorest solution: the temperature field is
discontinius on both lines # = § and y = b. The best solution is that from [1]
(and[3]): the temperature field is continuous in the whole region.
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Table 2.
Assembly temperature (C°) from [5].

y/x 0.000 0.195 0.391 0.586 0.586 1.260 1.934 2.608

1.000 74.17 72.71 71.65 70.89
0.714 74.08 72.61 71.56 70.79
0.428 73.80 72.32 71.27 70.51
0.142 73.33 71.85 70.78 68.42

0.142 73.33 71.85 70.78 68.42 68.42 48.13 38.81 35.84
0.094 73.35 71.86 70.79 68.50 68.48 48.16 38.83 35.86
0.048 73.36 71.87 70.79 68.62 68.51 48.18 38.84 35.86
0.000 73.36 71.87 70.79 68.75 68.52 48.18 38.84 35.87

Table 3.
Assembly temperature (C°) from [2].

y/z 0.000 0.195 0.391 0.586 0.586 1.260 1.934 2.608

1.000 73.40 71.92 70.86 70.10
0.714 73.30 71.82 70.76 70.00
0.428 73.02 71.52 70.46 69.70
0.142 72.53 71.02 69.96 69.20

0.142 75.90 73.38 68.89 61.94 69.20 48.54 39.05 36.02
0.094 75.82 73.30 68.81 61.86 69.26 48.57 39.07 36.04
0.048 75.77 73.25 68.76 61.81 69.30 48.59 39.08 36.05
0.000 75.76 73.23 68.74 61.79 69.31 48.60 39.08 36.05
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STACIONARAUS SILUMOS LAIDUMO PROCESO
MODELIAVIMAS STACIAKAMPESE SRITYSE
M. BUIKE

Darbe nagrinéjamas stacionarus §ilumos pasiskirstymas dviejy stac¢iakampiy sri¢iy jungi-

taikymo ribos. Sudaryta baigtiniy skirtumuy schema ir apskaiciuotas skaitinis sprendinys,

kuris palygintas su analiziniais sprendiniais.



