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ABSTRACT

The point model of a nuclear reactor with delay in feedback line ��power � reactivity�
estimating the in	uence of six groups of delayed neutrons is investigated
 A linear and
non�linear analysis of the model is made


�� INTRODUCTION

Let us take the point model of a nuclear reactor that was suggested in 

��
The equations of its dynamics are given by
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Here N �t� is the density of neutrons at the time moment time t� N� is its
steady state� rN is the coe�cient of linear growth of the density of neutrons�
C �t� is the summarized density of all delayed neutrons at the time t� C�

is its steady meaning� rc is the coe�cient of linear growth of the density of
delayed neutrons� hN � � is the delay in of feedback line �power�reactivity��
hj � � is the delay� meaning the generation time of delayed neutrons group

j� �j �
�j
�

is the relative yield of delayed neutrons �
P�

j�� �j � 
 �� �j is
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part of delayed neutrons of the j kind� � is the part of all delayed neutrons
�� �

P�
j�� �j �� a ��
 � a � �� is the parameter regulating the power of the

reactor�
As the delayed neutrons make up from ���� to 
�	� of the whole number

of neutrons� so a will be considered as a small parameter�

�� LINEAR ANALYSIS

Let a � �� Then the system �
�
� � �
��� has two equilibrium states

N �t� � �� C�t� � ��

and

N�t� � N�� C�t� � C��

It is known that the zero equilibrium state is non�stable� We shall analyse
the system �
�
� � �
��� in the neighbourhood of non�zero equilibrium state�
After the substitution of

N�t� � N�

 � x�t��� ���
�

C�t� � C�

 � y�t�� �����

into equations �
�
� � �
���� we get the equations
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The linear parts of ������ ����� are given by

�

x �t� � �rNx�t� hN �� ���	�
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The characteristic equation of the system ���	� � ����� is de�ned as



 � rN exp���hN ��
� � rc

�X
j��

�j exp���hj�� � �� �����

The analysis of the roots of this equation splits into the investigation of two
quasi�polynomial roots�
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The disposition of the roots of the quasi�polynomial P ��� � ��rN exp���hN �
on the complex plane is well�known 
��� but in order to determine the dispo�
sition of the roots of the quasi�polynomial

P ��� � �� rc

�X
j��

�j exp���hj� �����

on the complex plane we shall do a special research�
Introducing additional parameter p� we shall analyse the roots of the quasi�

polynomial

Pp��� � �� p� rc

�X
j��

�j exp���hj� �����

by the D � decomposition method 
	�� If � � �� then

p� rc � �� ���
��

Line ���
�� is one of D � decomposition curves on the plane� Let � � i��
Then we get from ����� the following parameter equations of the other D �
decomposition curves�
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In the case of � � �� we �nd the coordinates of the recurrence point �p�� z��
of the curves ���
�� and ���

� � ���
��

�p�� r�� �
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BBB��
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D � decomposition of parametres p and rc on the plane is given in �g� 
�
The values of �j and hj are taken from table 
 
�� � Two roots with positive
real parts appear in the region D��



Modelling of Nuclear Reactors Dynamics ��

Table ��

D�decomposition


Fuel j T��� � hj s �j
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���
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�� �
���
� �
�� �
���
� �
�� �
���
� �
�� �
���

Figure �� D � decomposition
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���� The reason of oscillation � the feedback line

We take di�erential equations����� � ����� If � � rNhN �
�
� is a su�ciently

small positive variable� then equation ����� has a stable periodical solution

��
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�
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Theorem ���� If rc
P�

j�� �jhj � 
� then the roots of quasi�polynomial �����
satisfy the inequality Re� � � and the di	erential equation ���
� has a
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stable periodical solution�

Conclusion� We can calculate the stable periodical solution of the equation
���
� using the formula

y �t� � 	y� �t� � 	�y� �t� � � � � � �����

where functions yj �t� are found using the method of undetermined coe��
cients�
Thus

�

y� �t� � rc

�X
j��

�jy� �t� hj� � rcx� �t� � �����

�

y� �t� � rc

�X
j��

�jy� �t� hj� � rcx� �t� � y� �t�
�

y� �t� � �����

We get from the equation �����

y� �t� �
rc

j P �i�� j�
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We get from the equation ����� that

y� �t� � A sin ��t�B cos ��t� �����

where
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Therefore� di�erential equations �
�
� and �
��� have the stable periodical
solutions
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 � 	 cos



�hN
� � 	�x���� � o

�
	�
�
�� ���

�

C�t� � C�

 � 	y� ��� � 	�y� ��� � o
�
	�
�
�� ���
��

where functions x� ���� y� ��� � y� ��� and variable 	� b�� c� are de�ned
by formulae ���
�����	� � ���
��� withh � � �

�hN
� � � t

��c���
�
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���� Oscillations of two frequencies

We shall analyse the system

�
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Let rN � �
�hN

� �� rc � r�c � �� parameters �� � are assumed to be
small� and r�c �

��P
�

j�� �j sin��hj
� where �� is the unique root of the equationP�

j�� �j cos�hj � � belonging to the interval ��� �
�hN

��
After substitution ���
� � ����� into equations ���
� � ���
�� we get

di�erential equations
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When � � rN �
�

�hN
� � � 
� the di�erential equation ���
	� has a stable

periodical solution 
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If � � � � �� then the characteristic equation ����� of the linear part of
di�erential equations ���
	� � ���
�� has two pairs of purely imaginary roots
�i �

�hN
� �i�� and the real parts of the other roots are negative� Then the

system of di�erential equations ���
	� � ���
�� under certain conditions has a
stable solution of two frequencies� The asymptotic expression of this solution
is too complicated� but the formed statements easily tell the peculiarities of
the numerical expression of this solution�
In this case the oscillation of two frequencies is caused by the perturbations

in feedback line together with the in�uence of delayed neutrons�
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���� The reason of oscillation given by the in�uence of delayed neu�
trons

Let assume that rNhN � �
� � but the characteristic quasi�polynomial has

one pair of purely imaginary roots �i��� and real parts of other roots are
negative� This analysis is done in the neighbourhood of the equilibrium state
C�t� � C��

Let us analyse the equation ���
��
It is clear that x�t� � �� when t � �� Our problem leads to �nding

a periodical solution of the equation ���
��� It is not di�cult to get the
asymptotic expression of this solution �see 
�� ��

�� NONLINEAR ANALYSIS � A �� � �

The earlier analysed reasons of the appearance of periodical solutions at a � �
let us localize clearly enough the parameters of the analysed model� At the
same time nonlinear analysis should not cause great problems in general�
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