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ABSTRACT

The point model of a nuclear reactor with delay in feedback line ,,power - reactivity”
estimating the influence of six groups of delayed neutrons is investigated. A linear and
non-linear analysis of the model is made.

1. INTRODUCTION

Let us take the point model of a nuclear reactor that was suggested in [1].
The equations of its dynamics are given by

N (0 = vl +a - S - N(tJGOhN)]N(t), (1.1)
6
20 :rc[A]’\Sz) - o Al t-mIC . (1.2)

Here N (t) is the density of neutrons at the time moment time t; Ny is its
steady state; ry is the coefficient of linear growth of the density of neutrons;
C (t) is the summarized density of all delayed neutrons at the time ¢; Cp
is its steady meaning; 7. is the coefficient of linear growth of the density of
delayed neutrons; hpy > 0 is the delay in of feedback line ”power-reactivity”;
hj > 0 is the delay, meaning the generation time of delayed neutrons group

J; o5 = %J is the relative yield of delayed neutrons ( E?Zl a; =1); Bjis
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part of delayed neutrons of the j kind; (3 is the part of all delayed neutrons
8= 25:1 B ); a(—1< a <0) is the parameter regulating the power of the
reactor.

As the delayed neutrons make up from 0.7% to 1.5% of the whole number
of neutrons, so a will be considered as a small parameter.

2. LINEAR ANALYSIS

Let @ =0. Then the system (1.1) — (1.2) has two equilibrium states

and
N(t) = Ny, C(t) = Co.

It is known that the zero equilibrium state is non-stable. We shall analyse
the system (1.1) — (1.2) in the neighbourhood of non-zero equilibrium state.
After the substitution of

N(t) = No[1 + 2()], (2.1)
C(t) = Co[1 +y(t)]

into equations (1.1) — (1.2), we get the equations

z (t) +rn[l +z(t)]z(t — hy) =0, (2.3)
6

Y (8) = re[a(t) - Z a;y(t — hy)][1 +y(D)]- (2.4)

The linear parts of (2.3), (2.4) are given by

z (t) = —rnxz(t — hy), (2.5)
6
(0 = o)~ Y agyle )l 20

The characteristic equation of the system (2.5) — (2.6) is defined as

6
147N exp(—)\hN)][)\+rCZaj exp(—Ah;)] = 0. (2.7)

Jj=1

The analysis of the roots of this equation splits into the investigation of two
quasi-polynomial roots.
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The disposition of the roots of the quasi-polynomial P(\) = A+ry exp(—Ahy)
on the complex plane is well-known [2], but in order to determine the dispo-
sition of the roots of the quasi-polynomial

6
P\ = )\+rCZaj exp(—Ah;) (2.8)

j=1

on the complex plane we shall do a special research.
Introducing additional parameter p, we shall analyse the roots of the quasi-
polynomial

6
Py(\) =A+p+re Y ajexp(—Ah;) (2.9)

=1

by the D — decomposition method [5]. If A =0, then
p+re=0. (2.10)

Line (2.10) is one of D — decomposition curves on the plane. Let \ = io.
Then we get from (2.9) the following parameter equations of the other D —
decomposition curves:

o
re = — , (2.11)

> ajsinoh;

i=1

6

o ; ajcosoh; 6

e ——- —rCZaj coscahj. (2.12)
j=1

6
> ajsinoh;
Jj=1

In the case of o — 0, we find the coordinates of the recurrence point (po, 29)
of the curves (2.10) and (2.11) - (2.12)

(po;To0) = | — ! ; ! . (2.13)

6 6
> ajh; Y ajh;
Jj=1 Jj=1

D — decomposition of parametres p and 7. on the plane is given in fig. 1.
The values of @; and h; are taken from table 1 [3] . Two roots with positive
real parts appear in the region D-.
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Table 1.
D-decomposition.
Fuel ki Tijo =hj s a;
1 55.72 0.033
2 22.72 0.219
23577 3 6.22 0.196
4 2.30 0.395
5 0.61 0.115
6 0.23 0.042
Dy
1.5 (k<)

Figure 1. D — decomposition.

3. NONLINEAR ANALYSIS (4 =0)

3.1. The reason of oscillation - the feedback line

We take differential equations(2.3) — (2.4) If ¢ =ryhy — 5 is a sufficiently

small positive variable, then equation (2.3) has a stable periodical solution
[2]
w(t) = &or (1) + Ex2 () + -+, (3.1)

where

1
x1 (t) = cosot, x5 (t) = 10 (sin 20t + 2 cos 20t) ,

Co ™ g
”( Tt > o ST\

1 3 —2
Cy = —, b2:4—0

Theorem 3.1. If r, E?:1 ajh; <1, then the roots of quasi-polynomial (2.8)
satisfy the inequality ReX < 0 and the differential equation (2.4) has a
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stable periodical solution.

Conclusion. We can calculate the stable periodical solution of the equation
(2.4) wusing the formula

y(t) =&y () +Ey2 () + -+, (3.2)

where functions y; (t) are found using the method of undetermined coeffi-
cients.

Thus
6
ymw+n§:%wu—hﬂ:nmuy (3.3)
6
Qﬂﬂ+nZ%WMFWﬂ:n@@+m@MMW (3.4)

We get from the equation (3.3)

Te

y1 (1) = P [Im P (io) sinot + Re P (io) cos at]. (3.5)

We get from the equation (3.4) that

y2 (t) = Asin 20t + B cos 20t, (3.6)
where
1 . .
A= W[WlReP (220-) + WQImP (220)], (3-7)
1
B=——— P (2i0) — WiIm P (2¢ ;
P (2i0) |2[W2Re (2io) — WiIm P (2i0)], (3.8)
Wiz Lot — 2 (1m2P (o) - ReP (io)] (3.9)
1= IOTC 3] P (io) P m o e 1o)|, .
1 or? . ;
W2 = ST'C + W[Re P(w)ImP(za)] (310)

Therefore, differential equations (1.1) and (1.2) have the stable periodical
solutions

Nﬁ%:Mﬂ+fumikT+§mﬁﬁ+0@ﬂL (3.11)
C(t) = Col[l + &y (1) + Ey2 (1) + 0 (€%)], (3.12)

where functions s (7), y1 (7), w2 (7) and variable &, bs, ¢ are defined
by formulae (3.1),(3.5) — (3.10), withh o = T= -t

T _—t _
2hN’ 1+co€2"
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3.2. Oscillations of two frequencies

We shall analyse the system

N (t) =ry[l— N(%Ohjv)]N(t), (3.13)
6
¢0=rSd - =S acu-nmion. 31y

Let rny = ﬁ +¢€, re =71} 4+ u, parameters &, p are assumed to be

small, and r¥ = =—2—— where o, is the unique root of the equation
’ c 51 ajsinos h;’

25:1 ajcosoh; =0 belonging to the interval (0, 37~).
After substitution (2.1) — (2.2) into equations (3.13 — (3.14) we get
differential equations

() + (ﬁ +e)a(t — hy)[1+a(t)] =0, (3.15)

Y (8) + (rf + Y ay(t = hy) —z@][L+yB] =0.  (3.16)

Jj=1

When 0 <ry — 57— =¢ <1, the differential equation (3.15) has a stable
periodical solution [2]

2(t) = € cos —— w1t + o(€2), (3.17)
2hy
where
h
E=1/X y =1 e (3.18)
b2
3m— 2 1
b2 = 10 , Co = m (319)

If e =p =0, then the characteristic equation (2.7) of the linear part of
differential equations (3.15) — (3.16) has two pairs of purely imaginary roots
ﬁ:iﬁ, +io, and the real parts of the other roots are negative. Then the
system of differential equations (3.15) — (3.16) under certain conditions has a
stable solution of two frequencies. The asymptotic expression of this solution
is too complicated, but the formed statements easily tell the peculiarities of
the numerical expression of this solution.

In this case the oscillation of two frequencies is caused by the perturbations
in feedback line together with the influence of delayed neutrons.
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3.3. The reason of oscillation given by the influence of delayed neu-
trons

Let assume that ryhy < % but the characteristic quasi-polynomial has
one pair of purely imaginary roots =io., and real parts of other roots are
negative. This analysis is done in the neighbourhood of the equilibrium state
C(t) = Co.

Let us analyse the equation (3.16)

It is clear that z(¢t) — 0, when ¢ — co. Our problem leads to finding
a periodical solution of the equation (3.16). It is not difficult to get the

asymptotic expression of this solution (see [2] ).

4. NONLINEAR ANALYSIS ( A#0)

The earlier analysed reasons of the appearance of periodical solutions at a = 0
let us localize clearly enough the parameters of the analysed model. At the
same time nonlinear analysis should not cause great problems in general.
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BRANDUOLINIO REAKTORIAUS DINAMIKOS
MATEMATINIS MODELIAVIMAS

K. BUCYS, D. SVITRA

Darbe sudarytas branduolinio reaktoriaus matematinis modelis, kuris yra aprasomas dvieju
paprastyju diferencialiniy lygciy su véluojanciu argumentu sistema. Tiriamas Sio modelio
sprendinio stabilumas. Nurodytos salygos, kada atsiranda osciliuojantys sprendiniai, is-
tirtos tokios bifurkacijos priezastys. Matematiniai teiginiai yra irodomi panaudojant D -
suskaidymo metoda.



