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ABSTRACT

Recursion leads to automatic variable blocking for dense linear-algebra algorithms. The
recursive way of programming algorithms eliminates using BLAS level 2 during the
factorization steps. For this and other reasons recursion usually speeds up the algorithms.
The Cholesky factorization algorithm for positive definite matrices and LU factorization
for general matrices are formulated. Different storage data formats and recursive BLAS
are explained in this paper. Performance graphes of packed and recursive Cholesky
algorithms are presented.

1. INTRODUCTION

This work is a continuation of the work of Gustavson and Toledo described
in [5; 9]. These papers describe the application of recursion to the numerical
dense linear algebra algorithms. Recursion leads to automatic variable block-
ing for the dense linear-algebra algorithms. This leads to modifications of the
LAPACK [1] algorithms. LAPACK’s level-2 version routines are transformed
into level-3 codes by using recursion.
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Fortran 90 allows recursion (see [8]). The programs are very concise and the
recursion part is automatic as it is handled by the compiler. The intermediate
subroutines obey the Fortran 90 standard too (see [3]).

Section 2 shows the recursive Cholesky factorization algorithm. Section 3
formulates the recursive algorithm of Gaussian elimination without pivoting
and LU factorization with partial pivoting. Section 4 explains two recursive
BLAS: RTRSM and RSYRK.

2. CHOLESKY FACTORIZATION

We would like to compute the solution to a system of linear equations AX = B,
where A is real symmetric or complex Hermitian and, in either case, positive
definite matrix, X and B are rectangular matrices or vectors. The Cholesky
decomposition can be used to factor A, A = L LT or A = UTU, where U is an
upper triangular matrix and L is a lower triangular (L = UT). The factored
form of A is then used to solve the system of equations A X = B.

A recursive algorithm of Cholesky factorization is described in detail in [10;
5]. Here we give the final recursive algorithms for the lower triangular and
upper triangular cases. We assume that A is n by n.

Recursive Algorithm 2.1. Cholesky recursive algorithm if lower triangular
part of A is given (rcholesky):
Do recursion
e ifn > 1 then
e Lq1 := rcholesky of Aqq
[} LZlerl = A21 — RTRSM
o 12122 = A22 — Lgngl — RSYRK
e oo := rcholesky of Azg
e otherwise
o [ = \/Z

FEnd recursion

Recursive Algorithm 2.2. Cholesky recursive algorithm if upper triangular
part of A is given (rcholesky):
Do recursion
e if n > 1 then
e Uy := rcholesky of Ay
L] UljiUlQ = A;» —» RTRSM
o Agy:= Ay —ULU1, — RSYRK
e Uyy := rcholesky of Azg
e otherwise
o U :=+A

FEnd recursion

The matrices Ay1, A1z, Az1, Asz, L1y, Lo, Loz, Uy, Uz and Uy are
submatrices of A, L and U respectively.
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A Ap Ly Uir Usps
A_<A21 z422>7 L_<L21 L22> and U_< U22>
The sizes of the submatrices are: for A1, L1 and Uyq is h x h, for Ay; and
Lyy is (n— h) x h, for A9 and Uys is h X (n— h), and for Asg, Los and Uss is
(n — h) x (n — h), where h = n/2. Matrices L1, Laa, Uy; and Uss are lower
and upper triangular respectively. Matrices A1y, A1a, Ao, Asa, Loy and Ujs

are rectangular.
The RTRSM and RSYRK are recursive BLAS of _TRSM and _SYRK re-

spectively. _TRSM solves a triangular system of equations. _SYRK performs
the symmetric rank k operations (see 2.2).

2.1. Full and Packed Storage Data Format

The Cholesky factorization algorithm can be programmed either in ”full stor-
age” or "packed storage”. For example the LAPACK subroutine POTRF
works on full storage, while the routine PPTRF is programmed for packed
storage. Here we are interested only in full storage and packed storage hold-
ing data that represents dense symmetric positive definite matrices. We will
compare our recursive algorithms to the LAPACK POTRF and PPTRF sub-
routines.

The POTRF subroutine uses the Cholesky algorithm in full storage. A
storage for the full array A must be declared even if only n x (n + 1)/2
elements of array A are needed and, hence n x (n — 1)/2 elements are not
touched. The PPTRF subroutine uses the Cholesky algorithm on packed
storage. It only needs n x (n + 1)/2 memory words. Moreover the POTRF
subroutine works fast while the PPTRF subroutine works slow. Why? The
routine POTRF is constructed with BLAS level 3, while the PPTRF uses the
BLAS level 2. These LAPACK data structures are illustrated by the figs. 1
and 2 respectively.

Lower triangular case Upper triangular case
1 1 8 15 22 29 36 43
2 9 9 16 23 30 37 44
3 10 17 17 24 31 38 45
4 11 18 25 25 32 39 46
5 12 19 26 33 33 40 47
6 13 20 27 34 41 41 48
7 14 21 28 35 42 49 49

Figure 1. The mapping of 7x 7 matrix for the LAPACK Cholesky Algorithm using the
full storage.
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Lower triangular case Upper triangular case
1 1 2 4 7 11 16 22
2 8 3 5 8 12 17 23
3 9 14 6 9 13 18 24
4 10 15 19 10 14 19 25
5 11 16 20 23 15 20 26
6 12 17 21 24 26 21 27
7 13 18 22 25 27 28 28

Figure 2. The mapping of 7 x 7 matrix for the LAPACK Cholesky Algorithm using the
packed storage.

Lower triangular case Upper triangular case
1 1 2 4| 7 10 13 16
2 4 3 5| 8 11 14 17
3 5 6] 6] 9 12 15 18
7 11 15|19 19 20 22 25
8 12 16|20 21 21 23 26
9 13 17|22 24 26 24 27
10 14 18|23 25 27 28 28

Figure 3. The mapping of 7 x 7 matrix for the LAPACK Cholesky Algorithm using the
packed recursive storage.

2.2. The Recursive Storage Data Format

We introduce a new storage data format, the recursive storage data format,
using the recursive algorithms 2.1 and 2.2. Like packed data format this
recursive storage data format requires n x (n + 1)/2 storage for the upper or
lower part of the matrix. The recursive storage data format is illustrated in
fig. 3. A buffer of the size p x (p — 1)/2, where p = [n/2] (integer division),
is needed to convert from the LAPACK packed storage data format to the
recursive packed storage data format and back. No buffer is needed if data is
given in recursive format.

We can apply the BLAS level 3 using the recursive packed storage data data
format. The performance of the recursive Cholesky algorithm with the recur-
sive packed data format reaches the performance of the LAPACK POTRF
algorithm. A graph with the performance between different packed storages
is presented in fig. 4.

The graph in fig. 4 presents seven curves. From the bottom: The first two
curves represent LAPACK POTRF performance results for upper and lower
case respectively. The third curve represents IBM ESSL performance results
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Figure 4. The performance graphs between different packed storage data formats of the
Cholesky factorization algorithm run on the 4-way IBM PowerPC 604e computer, using the
double precision arithmetic.

of the lower case. The last four curves give the performance of variants of
the recursive algorithm. The conversion time from LAPACK packed data
format to the recursive packed data format and back is included here. The
fourth and fifth curves give performance of the L and U variants without any
compiler directives. The sixth and seventh curves give performance of the
L and U variants using compiler parallelizing directives. The SMP parallel
ESSL DGEMM was used by the last five algorithms.

The same good results were obtained on other parallel supercomputers, for
example on Compaq a DS-20 and SGI Origin 2000.

The forward and back substitutions perform better than LAPACK too. The
recursive RTRSM is used here.

3. LU FACTORIZATION

We would like to compute the solution to a system of linear equations AX = B,
where A is a real or complex matrix, and X and B are rectangular matrices
or vectors. Gaussian elimination with row interchanges is used to factor A
as LU = PA, where P is a permutation matrix, L is a unit lower triangular
matrix, and U is an upper triangular matrix. The factored form of A is then
used to solve the system of equations AX = B.

The recursive algorithm of the Gauss LU factorization is described in detail
in [2; 5]. We give two recursive algorithms here. They are listed in figs. 5 and 6.

The matrices Al, Az, Ag, A12; A22, Ll, Lll; L21, L22, Ul, U3, U12 and U22
are submatrices of A, L and U respectively, a;; € A;.
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Recursive Algorithm 3.1. Recursive LU factorization without pivoting
(rgausslu):

Do recursion
e if min(m,n) > 1 then
e (Ly,Uy) = rgausslu of Ay
e L11U;2 = A;s —» RTRSM
L A22 = Asy — Ly1U1a — _GEMM
o (Lyy, Usy) = rgausslu of Ay
e otherwise
o L1 = Al/an and U1 = a1
End recursion
e if n > m then
e LU3; = A3 — RTRSM

Figure 5.

Recursive Algorithm 3.2. Recursive LU=PA factorization with partial pi-
voting (rgausslu):

Do recursion
e if min(m,n) > 1 then
e (P, L;,U;) = rgausslu of Ay
e Forward pivot As by P — _LASWP
e [11Un = A1 - RTRSM
[ 12122 = A22 — L21U12 - _GEMM
o (P, Loo,Uso) = rgausslu of Ao
e Back pivot Ay by P, — _LASWP
o P = P2P1
e otherwise
e pivot A,
[ ] L1 = Al/au and U1 = am
End recursion
e if n. > m then
e Forward pivot A3 by P — _LASWP

where Py and P> are permutation matrices.

Figure 6.
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4. RECURSIVE BLAS AND THEIR PARALLELISM

Two recursive BLAS (Basic Linear Algebra Subprograms, see [12]) subrou-
tines are used in our recursive Cholesky and recursive LU algorithms: RTRSM
and RSYRK. These two routines will be explained below.

4.1. RTRSM

RTRSM is a recursive formulation of "“TRSM, where _is a precision and arith-
metic indicator: S, D, C or Z. _-TRSM subroutine solves one of the matrix
equation

AX =aB,ATX =aB,XA=aB,orXA”T = aB,

where a is a scalar. X and B are (m x n) rectangular matrices. A is a
unit, or non-unit, upper or lower (m X m) triangular matrix. The matrix X
is overwritten on B. We have 16 different triangular equations because A
and AT can be either upper or lower triangular matrices, and the diagonal is
normal or unit.

We will introduce the recursive formulation only for one case AX = aB,
where A is lower triangular. The other cases will be similar.

The matrices A, B, and X can be partitioned into smaller submatrices,

thus
<A11 ><X11 Xu)_a(Bu B12>
Ay A Xo1 Xon ) Ba1 Bao
The matrices A1 = A(1 : h,1 : h), Aoy = A(h+1:m,1 : h), Ay =
Alh+1:m,h+1:m), Biyn = B(1: h,1:p), Bio = B(1: h,p+1:n),
By =B(h+1:m,1:p), Boo=B(h+1:m,p+1:n), X;; =X(1:h,1:p),
Xi2=X{1:hp+1:n), Xog =X(h+1:m,1:p)and Xoo = X(h+1:
m,p+ 1:n) are submatrices of A, B and X respectively.
Multiplying the matrix A by X gives:

AnXi AnXio _ ([ @B abBi
A X111+ A Xo1 A Xio + Axn X aByy aBsy )

We have got two independent groups of triangular systems:

A X =aBn; A1 X2 = abBiy
Ago Xo1 = aBa1 — Ao X1y Ao X9y = aBay — A2 X9

We could do a double recursion on m and n; i. e. on h and p. However, we
do not do the recursion on p. This results in the following algorithm:

Recursive Algorithm 4.1. Recursive algorithm for the AX = B operation
(one group only), where A is a lower triangular matriz (rtrsm):

Do recursion
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e if m > 1 then
L] A11X1 == OéBl — RTRSM
e By:=aBy — Ay X, -» _GEMM
e A3, X, =aB, - RTRSM
e otherwise
L] (L11X1 = aB1
FEnd recursion

4.2. RSYRK

RSYRK is a recursive formulation of _SYRK, where _ is a precision and arith-
metic indicator: S, D, C or Z. -SYRK performs one of the symmetric rank &
operations:

C :=aAAT + 5C or C := aAT A + C,

where « and (3 are scalars. A is a rectangular matrix (m x n). C is a square
symmetric matrix.

We will introduce the recursive formulation only for one of the four cases
of SYRK:

C :=aAA” + BC.

The matrices A and C can be partitioned into smaller submatrices:

<C11 ):ﬁ<011 >+a<A11 A12)<A11 Ars >T
Co1 O Co1 O Az Az Az Az '
The matrices 413 = A1 : h,1 : p), Ao = A1 : h,p+ 1 : n), Ay =
Ah+1:m,1:p), Ass = A(h+1:m,p+1:n), Ciy = C(1 : h,1: h),
Coyp =C(h+1:m,1:h),Coeo =C(h+1:m,h+1:m) are submatrices of
A and C, respectively. The recursion could be done again on two variables, h

and p, but we do recursion on h only.
In terms of the partitioning we have three independent formulas:

Ci1 = BC11 + aA11A1T1 + aA12A1T2:
Co1 = B0y + aA21A1T1 + aA22A1T2:
Cyy = /8022 + CMA21A;1 + CVA22A;2-

These three computations can be computed in parallel. We now formulate a
recursive algorithm as follows:

Recursive Algorithm 4.2. Recursive algorithm for the C := aAAT 4+ BC
symmetric rank k operations (rsyrk):

Do recursion
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o if m > 1 then
Perform computation Chy :
o C11 :=fBC1 + aA; AT, - RSYRK
e (11 := éll + OzA12A¥12 — RSYRK
Perform computation Cay :
(] 6’21 = 6Cy + OzA21A;1F1 — _GEMM
o Oy :=Co + aAp AT, - .GEMM
Perform computation Cas:
o Oy = Ch + aAn A, - RSYRK
o Cyy := Coy + ady AL, - RSYRK
End recursion

4.3. A fast _GEMM algorithm

The _ of GEMM is a precision and arithmetic indicator: S, D, C or Z. .GEMM
subroutine does the following operations

C :=aAB + 3C,C :=aABT + 3C,C := aATB + j3C,

C:=aA"B" + 8C, or C := aAB® + 8C,C := aA°B + 5C
and C := aA“BY + 0,

where o and 3 are scalars. A, B and C are rectangular matrices. A", BT,
A% and B¢ are transpose and conjugate matrices respectively.

The GEMM operation is very well documented and explained in [6; 12].
We can see that work is done by _.GEMM for both our BLAS RTRSM 4.1 and
RSYRK 4.2. The speed of our computation depends very much from the speed
of a good _GEMM. Good _GEMM implementations are usually developed
by computer manufacturers. The model implementation of _.GEMM can be
obtained from netlib [12]; it works correctly but slowly. However, an excellent
set of high performance BLAS, called _.GEMM based BLAS was developed
by Bo Kagstrom at the University of Umea in Sweden, see for example [7].
A key idea behind .GEMM based BLAS was to cast all BLAS algorithms
in terms of the simple BLAS _.GEMM. Recently, the Innovative Computing
Laboratory at University of Tennessee in Knoxville developed a system called
ATLAS (see 4.3.1) which can produce a fast  GEMM program.

4.8.1. ATLAS

Automatically Tuned Linear Algebra Software (ATLAS) [11]. ATLAS is an
approach for the automatic generation and optimization of numerical software
for processors with deep memory hierarchies and pipelined functional units.
The production of such software for machines ranging from desktop work-
stations to embedded processors can be a tedious and time consuming task.
ATLAS has been designed to automate much of this process. So, having a fast
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_GEMM means our RTRSM and RSYRK routines will be fast. The ATLAS
GEMM is often better than _GEMM developed by the computer manufac-
ture. What is important, the ATLAS software is available to every body, free
of charge. Every personal computer can have a good GEMM.
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LAWRA — REKURSYVINIAI TIESINES ALGEBROS
ALGORITMAI

B. ANDERSEN, F. GUSTAVSON, A. KARAIVANOV, J. WASNIEWSKI,
P. YALAMOV

Rekursyviniai algoritmai leidzia automatiskai parinkti optimaly bloko dydj realizuojant tie-
sinés algebros algoritmus su pilnomis matricomis. Naudojant rekursyvini programavima
isvengiama BLAS bibliotekos antrojo lygio paprogramiy naudojimo vykdant faktorizaci-
jos cikla. Dél Sios ir kity priezasCiy rekursyviniai algoritmai dazniausiai yra greitesni uz
standartinius tiesinés algebros algoritmus. Straipsnyje pateikti Choleckio ir LU isskaidy-
mo rekursyviniai algoritmai. Apibreézti skirtingi rekursyviniai duomeny saugojimo formatai
ir aprasSytas naujas BLAS bibliotekos projektas. Pateikiami naujojo rekursyvinio Cholec-
kio isskaidymo algoritmo efektyvumo tyrimo rezultatai, kurie buvo atlikti su jvairiy tipy

kompiuteriais.



