
Mathematical Modelling and AnalysisVolume 4, 1999, pages 7{17c 1999 TechnikaLAWRA { LINEAR ALGEBRA WITHRECURSIVE ALGORITHMSB. S. ANDERSEN1, F. GUSTAVSON2, A. KARAIVANOV3,J. WA�SNIEWSKI4 and P. Y. YALAMOV1;51;3;4 Danish Computing Centre for Research and Education (UNI�C),Technical University of DenmarkDTU, Building 304, DK-2800 Lyngby, Denmark2 IBM T.J. Watson Research CenterP.P. Box 218, Yorktown Heights, NY 10598, USA5 Center of Applied Mathematics and Informatics, University of Rousse7017 Rousse, BulgariaE-mail: 1bjarne.stig.andersen@uni-c.dk, 2gustav@watson.ibm.comE-mail: 3alex@uni-c.dk, 4jerzy.wasniewski@uni-c.dkE-mail: 5yalamov@ami.ru.acad.bgReceived September 24, 1999ABSTRACTRecursion leads to automatic variable blocking for dense linear-algebra algorithms. Therecursive way of programming algorithms eliminates using BLAS level 2 during thefactorization steps. For this and other reasons recursion usually speeds up the algorithms.The Cholesky factorization algorithm for positive de�nite matrices and LU factorizationfor general matrices are formulated. Di�erent storage data formats and recursive BLASare explained in this paper. Performance graphes of packed and recursive Choleskyalgorithms are presented.1. INTRODUCTIONThis work is a continuation of the work of Gustavson and Toledo describedin [5; 9]. These papers describe the application of recursion to the numericaldense linear algebra algorithms. Recursion leads to automatic variable block-ing for the dense linear-algebra algorithms. This leads to modi�cations of theLAPACK [1] algorithms. LAPACK's level-2 version routines are transformedinto level-3 codes by using recursion.

8 J. Wa�sniewski et al.Fortran 90 allows recursion (see [8]). The programs are very concise and therecursion part is automatic as it is handled by the compiler. The intermediatesubroutines obey the Fortran 90 standard too (see [3]).Section 2 shows the recursive Cholesky factorization algorithm. Section 3formulates the recursive algorithm of Gaussian elimination without pivotingand LU factorization with partial pivoting. Section 4 explains two recursiveBLAS: RTRSM and RSYRK.2. CHOLESKY FACTORIZATIONWe would like to compute the solution to a system of linear equationsAX = B,where A is real symmetric or complex Hermitian and, in either case, positivede�nite matrix, X and B are rectangular matrices or vectors. The Choleskydecomposition can be used to factor A, A = LLT or A = UTU , where U is anupper triangular matrix and L is a lower triangular (L = UT). The factoredform of A is then used to solve the system of equations AX = B.A recursive algorithm of Cholesky factorization is described in detail in [10;5]. Here we give the �nal recursive algorithms for the lower triangular andupper triangular cases. We assume that A is n by n.Recursive Algorithm 2.1. Cholesky recursive algorithm if lower triangularpart of A is given (rcholesky):Do recursion� if n > 1 then� L11 := rcholesky of A11� L21LT11 = A21 ! RTRSM� Â22 := A22 � L21LT21 ! RSYRK� L22 := rcholesky of Â22� otherwise� L := pAEnd recursionRecursive Algorithm 2.2. Cholesky recursive algorithm if upper triangularpart of A is given (rcholesky):Do recursion� if n > 1 then� U11 := rcholesky of A11� UT11U12 = A12 ! RTRSM� Â22 := A22 � UT12U12 ! RSYRK� U22 := rcholesky of Â22� otherwise� U := pAEnd recursionThe matrices A11, A12, A21, A22, L11, L21, L22, U11, U12 and U22 aresubmatrices of A, L and U respectively.

LAWRA 9A = � A11 A12A21 A22 � ; L = � L11L21 L22 � and U = � U11 U12U22 �The sizes of the submatrices are: for A11, L11 and U11 is h� h, for A21 andL21 is (n�h)�h, for A12 and U12 is h� (n�h), and for A22, L22 and U22 is(n � h)� (n� h), where h = n=2. Matrices L11, L22, U11 and U22 are lowerand upper triangular respectively. Matrices A11, A12, A21, A22, L21 and U12are rectangular.The RTRSM and RSYRK are recursive BLAS of TRSM and SYRK re-spectively. TRSM solves a triangular system of equations. SYRK performsthe symmetric rank k operations (see 2.2).2.1. Full and Packed Storage Data FormatThe Cholesky factorization algorithm can be programmed either in "full stor-age" or "packed storage". For example the LAPACK subroutine POTRFworks on full storage, while the routine PPTRF is programmed for packedstorage. Here we are interested only in full storage and packed storage hold-ing data that represents dense symmetric positive de�nite matrices. We willcompare our recursive algorithms to the LAPACK POTRF and PPTRF sub-routines.The POTRF subroutine uses the Cholesky algorithm in full storage. Astorage for the full array A must be declared even if only n � (n + 1)=2elements of array A are needed and, hence n � (n � 1)=2 elements are nottouched. The PPTRF subroutine uses the Cholesky algorithm on packedstorage. It only needs n � (n + 1)=2 memory words. Moreover the POTRFsubroutine works fast while the PPTRF subroutine works slow. Why? Theroutine POTRF is constructed with BLAS level 3, while the PPTRF uses theBLAS level 2. These LAPACK data structures are illustrated by the �gs. 1and 2 respectively.Lower triangular case0BBBBBBBB@ 12 93 10 174 11 18 255 12 19 26 336 13 20 27 34 417 14 21 28 35 42 49
1CCCCCCCCA

Upper triangular case0BBBBBBBB@ 1 8 15 22 29 36 439 16 23 30 37 4417 24 31 38 4525 32 39 4633 40 4741 4849
1CCCCCCCCAFigure 1. The mapping of 7� 7 matrix for the LAPACK Cholesky Algorithm using thefull storage.

10 J. Wa�sniewski et al.Lower triangular case0BBBBBBBB@ 12 83 9 144 10 15 195 11 16 20 236 12 17 21 24 267 13 18 22 25 27 28
1CCCCCCCCA

Upper triangular case0BBBBBBBB@ 1 2 4 7 11 16 223 5 8 12 17 236 9 13 18 2410 14 19 2515 20 2621 2728
1CCCCCCCCAFigure 2. The mapping of 7 � 7 matrix for the LAPACK Cholesky Algorithm using thepacked storage.Lower triangular case0BBBBBBBB@ 12 43 5 67 11 15 198 12 16 20 219 13 17 22 24 2610 14 18 23 25 27 28

1CCCCCCCCA
Upper triangular case0BBBBBBBB@ 1 2 4 7 10 13 163 5 8 11 14 176 9 12 15 1819 20 22 2521 23 2624 2728

1CCCCCCCCAFigure 3. The mapping of 7 � 7 matrix for the LAPACK Cholesky Algorithm using thepacked recursive storage.2.2. The Recursive Storage Data FormatWe introduce a new storage data format, the recursive storage data format,using the recursive algorithms 2.1 and 2.2. Like packed data format thisrecursive storage data format requires n� (n+ 1)=2 storage for the upper orlower part of the matrix. The recursive storage data format is illustrated in�g. 3. A bu�er of the size p � (p � 1)=2, where p = [n=2] (integer division),is needed to convert from the LAPACK packed storage data format to therecursive packed storage data format and back. No bu�er is needed if data isgiven in recursive format.We can apply the BLAS level 3 using the recursive packed storage data dataformat. The performance of the recursive Cholesky algorithm with the recur-sive packed data format reaches the performance of the LAPACK POTRFalgorithm. A graph with the performance between di�erent packed storagesis presented in �g. 4.The graph in �g. 4 presents seven curves. From the bottom: The �rst twocurves represent LAPACK POTRF performance results for upper and lowercase respectively. The third curve represents IBM ESSL performance results

LAWRA 11

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
flo

p/
s

matrix size

PPTRF performance on 4-way IBM PowerPC 604e

Par.Rec.(U)
Par.Rec.(L)

Recursive(U)
Recursive(L)
LAPACK(U)
LAPACK(L)

ESSL(L)

Figure 4. The performance graphs between di�erent packed storage data formats of theCholesky factorization algorithm run on the 4-way IBM PowerPC 604e computer, using thedouble precision arithmetic.of the lower case. The last four curves give the performance of variants ofthe recursive algorithm. The conversion time from LAPACK packed dataformat to the recursive packed data format and back is included here. Thefourth and �fth curves give performance of the L and U variants without anycompiler directives. The sixth and seventh curves give performance of theL and U variants using compiler parallelizing directives. The SMP parallelESSL DGEMM was used by the last �ve algorithms.The same good results were obtained on other parallel supercomputers, forexample on Compaq � DS{20 and SGI Origin 2000.The forward and back substitutions perform better than LAPACK too. Therecursive RTRSM is used here.3. LU FACTORIZATIONWe would like to compute the solution to a system of linear equationsAX = B,where A is a real or complex matrix, and X and B are rectangular matricesor vectors. Gaussian elimination with row interchanges is used to factor Aas LU = PA, where P is a permutation matrix, L is a unit lower triangularmatrix, and U is an upper triangular matrix. The factored form of A is thenused to solve the system of equations AX = B.The recursive algorithm of the Gauss LU factorization is described in detailin [2; 5]. We give two recursive algorithms here. They are listed in �gs. 5 and 6.The matrices A1, A2, A3, A12, A22, L1, L11, L21, L22, U1, U3, U12 and U22are submatrices of A, L and U respectively, a11 2 A1.

12 J. Wa�sniewski et al.Recursive Algorithm 3.1. Recursive LU factorization without pivoting(rgausslu):Do recursion� if min(m;n) > 1 then� (L1; U1) = rgausslu of A1� L11U12 = A12 ! RTRSM� Â22 = A22 � L21U12 ! GEMM� (L22; U22) = rgausslu of Â22� otherwise� L1 := A1=a11 and U1 = a11End recursion� if n > m then� LU3 = A3 ! RTRSMFigure 5.
Recursive Algorithm 3.2. Recursive LU=PA factorization with partial pi-voting (rgausslu):Do recursion� if min(m;n) > 1 then� (P1; L1; U1) = rgausslu of A1� Forward pivot A2 by P ! LASWP� L11U12 = A12 ! RTRSM� Â22 := A22 � L21U12 ! GEMM� (P2; L22; U22) = rgausslu of Â22� Back pivot A1 by P2 ! LASWP� P = P2P1� otherwise� pivot A1� L1 := A1=a11 and U1 := a11End recursion� if n > m then� Forward pivot A3 by P ! LASWP� LU3 = A3 ! RTRSMwhere P1 and P2 are permutation matrices.Figure 6.

LAWRA 134. RECURSIVE BLAS AND THEIR PARALLELISMTwo recursive BLAS (Basic Linear Algebra Subprograms, see [12]) subrou-tines are used in our recursive Cholesky and recursive LU algorithms: RTRSMand RSYRK. These two routines will be explained below.4.1. RTRSMRTRSM is a recursive formulation of TRSM, where is a precision and arith-metic indicator: S, D, C or Z. TRSM subroutine solves one of the matrixequation AX = �B;ATX = �B;XA = �B; orXAT = �B;where � is a scalar. X and B are (m � n) rectangular matrices. A is aunit, or non-unit, upper or lower (m �m) triangular matrix. The matrix Xis overwritten on B. We have 16 di�erent triangular equations because Aand AT can be either upper or lower triangular matrices, and the diagonal isnormal or unit.We will introduce the recursive formulation only for one case AX = �B,where A is lower triangular. The other cases will be similar.The matrices A, B, and X can be partitioned into smaller submatrices,thus � A11A21 A22 �� X11 X12X21 X22 � = �� B11 B12B21 B22 �The matrices A11 = A(1 : h; 1 : h), A21 = A(h + 1 : m; 1 : h), A22 =A(h + 1 : m;h + 1 : m), B11 = B(1 : h; 1 : p), B12 = B(1 : h; p + 1 : n),B21 = B(h+1 : m; 1 : p), B22 = B(h+1 : m; p+1 : n), X11 = X(1 : h; 1 : p),X12 = X(1 : h; p + 1 : n), X21 = X(h + 1 : m; 1 : p) and X22 = X(h + 1 :m; p+ 1 : n) are submatrices of A, B and X respectively.Multiplying the matrix A by X gives:� A11X11 A11X12A21X11 +A22X21 A21X12 +A22X22 � = � �B11 �B12�B21 �B22 � :We have got two independent groups of triangular systems:A11X11 = �B11A22X21 = �B21 �A21X11 A11X12 = �B12A22X22 = �B22 �A21X12We could do a double recursion on m and n; i. e. on h and p. However, wedo not do the recursion on p. This results in the following algorithm:Recursive Algorithm 4.1. Recursive algorithm for the AX = B operation(one group only), where A is a lower triangular matrix (rtrsm):Do recursion

14 J. Wa�sniewski et al.� if m > 1 then� A11X1 = �B1 ! RTRSM� B̂2 := �B2 �A21X1 ! GEMM� A22X2 = �B̂2 ! RTRSM� otherwise� a11X1 = �B1End recursion4.2. RSYRKRSYRK is a recursive formulation of SYRK, where is a precision and arith-metic indicator: S, D, C or Z. SYRK performs one of the symmetric rank koperations: C := �AAT + �C or C := �ATA+ �C;where � and � are scalars. A is a rectangular matrix (m� n). C is a squaresymmetric matrix.We will introduce the recursive formulation only for one of the four casesof SYRK: C := �AAT + �C:The matrices A and C can be partitioned into smaller submatrices:� C11C21 C22 � = �� C11C21 C22 �+ �� A11 A12A21 A22 �� A11 A12A21 A22 �T :The matrices A11 = A(1 : h; 1 : p), A12 = A(1 : h; p + 1 : n), A21 =A(h + 1 : m; 1 : p), A22 = A(h + 1 : m; p + 1 : n), C11 = C(1 : h; 1 : h),C21 = C(h + 1 : m; 1 : h), C22 = C(h + 1 : m;h + 1 : m) are submatrices ofA and C, respectively. The recursion could be done again on two variables, hand p, but we do recursion on h only.In terms of the partitioning we have three independent formulas:C11 = �C11 + �A11AT11 + �A12AT12;C21 = �C21 + �A21AT11 + �A22AT12;C22 = �C22 + �A21AT21 + �A22AT22:These three computations can be computed in parallel. We now formulate arecursive algorithm as follows:Recursive Algorithm 4.2. Recursive algorithm for the C := �AAT + �Csymmetric rank k operations (rsyrk):Do recursion

LAWRA 15� if m � 1 thenPerform computation C11:� Ĉ11 := �C11 + �A11AT11 ! RSYRK� C11 := Ĉ11 + �A12AT12 ! RSYRKPerform computation C21:� Ĉ21 := �C21 + �A21AT11 ! GEMM� C21 := Ĉ21 + �A22AT12 ! GEMMPerform computation C22:� Ĉ22 := �C22 + �A21AT21 ! RSYRK� C22 := Ĉ22 + �A22AT22 ! RSYRKEnd recursion4.3. A fast GEMM algorithmThe of GEMM is a precision and arithmetic indicator: S, D, C or Z. GEMMsubroutine does the following operationsC := �AB + �C;C := �ABT + �C;C := �ATB + �C;C := �ATBT + �C; or C := �ABC + �C;C := �ACB + �Cand C := �ACBC + �C;where � and � are scalars. A, B and C are rectangular matrices. AT , BT ,AC and BC are transpose and conjugate matrices respectively.The GEMM operation is very well documented and explained in [6; 12].We can see that work is done by GEMM for both our BLAS RTRSM 4.1 andRSYRK 4.2. The speed of our computation depends very much from the speedof a good GEMM. Good GEMM implementations are usually developedby computer manufacturers. The model implementation of GEMM can beobtained from netlib [12]; it works correctly but slowly. However, an excellentset of high performance BLAS, called GEMM based BLAS was developedby Bo K�agstr�om at the University of Ume�a in Sweden, see for example [7].A key idea behind GEMM based BLAS was to cast all BLAS algorithmsin terms of the simple BLAS GEMM. Recently, the Innovative ComputingLaboratory at University of Tennessee in Knoxville developed a system calledATLAS (see 4.3.1) which can produce a fast GEMM program.4.3.1. ATLASAutomatically Tuned Linear Algebra Software (ATLAS) [11]. ATLAS is anapproach for the automatic generation and optimization of numerical softwarefor processors with deep memory hierarchies and pipelined functional units.The production of such software for machines ranging from desktop work-stations to embedded processors can be a tedious and time consuming task.ATLAS has been designed to automate much of this process. So, having a fast

16 J. Wa�sniewski et al.GEMM means our RTRSM and RSYRK routines will be fast. The ATLASGEMM is often better than GEMM developed by the computer manufac-ture. What is important, the ATLAS software is available to every body, freeof charge. Every personal computer can have a good GEMM.REFERENCES[1] E. Anderson, Z. Bai, C. H. Bischof, J. Demmel, J. J. Dongarra, J. Du Croz, A. Green-baum, S. Hammarling, A. McKenney, S. Ostrouchov and D. C. Sorensen. LAPACKUsers' Guide Release 2.0. SIAM, Philadelphia, 1995.[2] B.S. Andersen, F. Gustavson, J. Wa�sniewski and P. Yalamov. Recursive formulation ofsome dense linear algebra algorithms, In: Proceedings of the 9th SIAM Conference onParallel Processing for Scienti�c Computing, PPSC99, B. Hendrickson, K.A. Yelick,C.H. Bischof, I.S. Du�, A.S. Edelman, G.A. Geist, M.T. Heath, M.A. Heroux, C. Koel-bel, R.S. Schrieber, R.F. Sincovec, and M.F. Wheeler (Eds.), San Antonio, TX, USA,March 24-27, 1999, SIAM, Scienti�c Computing, CDROM.[3] J. Dongarra and J. Wa�sniewski. High Performance Linear Algebra Package { LA-PACK90, In: Advances in Randomized Parallel Computing, Kluwer AcademicPublishers, Combinatorial Optimization Series, P.M. Pardalos and S. Rajasekaran(Eds.), 1999 and available as the LAPACK Working Note (Lawn) Number 134:http://www.netlib.org/lapack/lawns/lawn134.ps[4] G.H. Golub and C.F. Van Loan. Matrix Computations (third edition) Johns HopkinsUniversity Press, Baltimore, MD, 1996.[5] F. Gustavson. Recursive Leads to Automatic Variable Blocking for Dense Linear-Algebra Algorithms. IBM Journal of Research and Development, 41 (6), November1997.[6] F. Gustavson, A. Henriksson, I. Jonsson, B. K�agstr�om and P. Ling. Recursive BlockedData Formats and BLAS' for Dense Linear Algebra Algorithms, In: Proceedings ofthe 4th International Workshop, Applied Parallel Computing, Large Scale Scienti�cand Industrial Problems, PARA'98, B. K�agstr�om, J. Dongarra, E. Elmroth, andJ. Wa�sniewski (Eds.), Ume�a, Sweden, June 1998, Springer, Lecture Notes in ComputerScience Number 1541, 195{206.[7] B. K�agstr�om, P. Ling and C. Van Loan. GEMM-based level 3 BLAS: High-performancemodel implementations and performance evaluation benchmark. ACM Trans. Math.Software, 1997.[8] S. Metcalf and J. Reid. Fortran 90/95 Explained. Oxford, New York, Tokyo, OxfordUniversity Press, 1996.[9] S. Toledo. Locality of Reference in LU Decomposition with Partial Pivoting. SIAMJournal on Matrix Analysis and Applications, Vol. 18, No. 4, 1997.[10] J. Wa�sniewski, B.S. Andersen, and F. Gustavson. Recursive Formulation of CholeskyAlgorithm in Fortran 90, In: Proceedings of the 4th International Workshop, Ap-plied Parallel Computing, Large Scale Scienti�c and Industrial Problems, PARA'98,B. K�agstr�om, J. Dongarra, E. Elmroth, and J. Wa�sniewski (Eds.), Ume�a, Sweden,June 1998, Springer, Lecture Notes in Computer Science Number 1541, pp. 574{578.[11] R.C. Whaley and J. Dongarra. Automatically Tuned Linear Algebra Software (AT-LAS), In: Ongoing Projects, The Innovative Computing Laboratory, Distributed Net-work Computing, Numerical Linear Algebra, Software Repositories, and PerformanceEvaluation, http://www.netlib.org/atlas/, Knoxville, Tennessee, USA, 1999.[12] BLAS (Basic Linear Algebra Subprograms), In: Ongoing Projects, The Innova-tive Computing Laboratory, Distributed Network Computing, Numerical Linear Alge-bra, Software Repositories, and Performance Evaluation, http://www.netlib.org/blas/,Knoxville, Tennessee, USA, 1999.

LAWRA 17LAWRA { REKURSYVINIAI TIESIN _ES ALGEBROSALGORITMAIB. ANDERSEN, F. GUSTAVSON, A. KARAIVANOV, J. WASNIEWSKI,P. YALAMOVRekursyviniai algoritmai leid�zia automati�skai parinkti optimaluc bloko dydic realizuojant tie-sin_es algebros algoritmus su pilnomis matricomis. Naudojant rekursyvinic programavimaci�svengiama BLAS bibliotekos antrojo lygio paprogramiuc naudojimo vykdant faktorizaci-jos ciklac. D_el �sios ir kituc prie�zas�ciuc rekursyviniai algoritmai da�zniausiai yra greitesni u�zstandartinius tiesin_es algebros algoritmus. Straipsnyje pateikti Choleckio ir LU i�sskaidy-mo rekursyviniai algoritmai. Apibr_e�zti skirtingi rekursyviniai duomenuc saugojimo formataiir apra�sytas naujas BLAS bibliotekos projektas. Pateikiami naujojo rekursyvinio Cholec-kio i�sskaidymo algoritmo efektyvumo tyrimo rezultatai, kurie buvo atlikti su icvairiuc tipuckompiuteriais.

