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ABSTRACT

A multicomponent iterative method of domain decomposition on adaptive grids for
solution of two-dimensional heat transfer equation is proposed. The adaptive grid is
constructed in curvilinear space where Cartesian grid is non-stationary and depends on
the solution behavior. In curvilinear space the initial two-dimensional heat transfer
equation is converted to the system of nonlinear parabolic equations with mixed
derivatives, a source and convective transfer.

1. INTRODUCTION

The heat transfer equation is one of the basic models of mathematical physics.
It can be considered as a test problem for construction of new difference
methods for solution of modern scientific problems. Such problems have many
dimensions, complicated geometry, different types of nonlinearities.

Numerical and analytical investigations show that application of adaptive
grids can increase appreciably the accuracy of numerical algorithms and re-
duce the grid dimension without the loss of solution accuracy. Adaptive grids
allow us to eliminate oscillations, simulated viscosity. Such grids are very
effective for solving multidimensional non-stationary problems with domains
of strong variation of the solution. The theory of adaptive grids is developed
now very intensively [10]-[15].

It was shown [1]-[3] that the multicomponent approach can be effectively
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used for the construction of numerical algorithms. The idea of combination
of multicomponent alternating direction method and domain decomposition
technique allow us to create a new class of numerical algorithms for different
types of problems of mathematical physics, including elliptic and parabolic
problems [5]-[9], [16], [17]. These algorithms are unconditionally stable as
implicit schemes and are explicit in realization. They have the rate of conver-
gence and computational costs similar to well-known explicit algorithms.

The main idea of this article is to combine adaptive grid technique with
multicomponent domain decomposition method for solving a two-dimensional
parabolic equation. The adaptive grid is constructed in curvilinear space
where the Cartesian grid is non-stationary and moves to domains of strong
variation of the solution. It is clear that the full mathematical model has
to be supplemented by differential equations which describe the dynamic of
Cartesian grid. So, in curvilinear space the full system to be solved is a sys-
tem of nonlinear parabolic equations with mixed derivatives, a source and
convective transfer. Proposed implicit finite difference schemes are nonlinear
too. For their effective solution a domain decomposition method is used in
the form suggested in [8]. For difference schemes of this method a multicom-
ponent iterative algorithm of decomposition type is proposed. The domain is
divided into minimal four-point sub-domains. Presented algorithms allow to
obtain independent solution of initial problem in each of sub-domains. This
can be important for working on multiprocessor computers. The number of
equations which should be solved in such a sub-domain is equal to the num-
ber of pattern points. Detailed numerical studies confirmed efficiency of the
proposed numerical methods.

2. STATEMENT OF THE PROBLEM

In an arbitrary domain G with a boundary I' we consider a two-dimensional
parabolic equation :

du_ 9 <k6u> + % (k@> tg k=k(xy) >0, (2.1

ot Ox \ ox dy
u(XaYv 0) = uO(X7y)a (Xa Y) € G:
u(x,y,t) =u(x,y,t), (xy)el, t>0. (2.2)

After a non-singular coordinates transformation of the general type:
z1 = z21(x,y,t), 22 =z2(x,y,t), T=t (2.3)

the domain G is converted to the rectangular domain Q (see Fig.1).
Equation (2.1) takes the form:

d(Tu)
or

= Lu+ Iu+ ¥g, (2.4)
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Figure 1. Domain G and domain 2) after transformation (2.3).
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1/2
dy 9%y 9%y B , (0w [ou\®
=2 =D =% - — | w — — . (2.
ot Dy 0z} + D> 022 + 02‘118,2‘2 021 + O2zs (2.7)

Initial and boundary conditions (2.2) have the form:

u(z1,292,0) = uo(21,22), (21,22) €Q,

u(z1,29,7) = ui(z1,29,7), (21,22) €0Q, T>0. (2.8)
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Dy, D, Cy, Cy are positive constants of the order of O(1).

Equations (2.6)-(2.7) describe the dynamics of rectangular Cartesian coor-
dinates. They correspond to a grid with nodes that are collected in domain
of strong variation of solution. Such form of adaptive grid was suggested in
[11]. The type of (2.6) — (2.7) depends on concrete situation. One can take
more simple equations that describe quasi-uniform grids [11]:

ox 0%x 0%x Oy 0%y
Z _p L ip,tE Y _p 2V ip
or 1522 M 023" Ot 1922 o

Oy
—. 2.9
022 (29)

Equations (2.6) — (2.7) or (2.9) are equations of the transformation inverse
for introduced above (2.3):

x =x(z1,22,7), y=yl(z1,2,7), t=T.

Since we have supposed that transformation (2.3) is non-singular:

621 622 622 821

The Jacobian of the inverse transformation ¥ (2.5) will be positive too.
In this case the positive determinacy of the symmetric matrix A = {ang}
takes place. And for operator L the strong ellipticity condition takes place:

2 2 2
i) &< ) aasbabs <b2) &, (2.10)
a=1

o,f=1 a=1

where 0 < b; < by are bounded constants and (&;,&>)7 is an arbitrary nonzero
real vector.

As aresult of transformation (2.3) the initial equation (2.1) is converted to
the system of nonlinear parabolic equations with mixed derivatives, a source
and convective transfer that is determined by the coefficients c;, 2.

Let us transform the equations for adaptive grid (2.6) — (2.7) by differenti-
ating over z; and zo:

Ox & 8%x

— =D Dy—= + @ 2.11
or laz% + 26z§ + o, (2.11)
Oy 0%y 0%y

—=D1—<+Dy,—=+® 2.12
or 182% + 282% + P2t (2.12)

where

®u=C, 02 (2sol(f(u))”2+‘1’(f(u))l/2 (Q@ . ))

0z, 022 Dzy 02,02
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3. FINITE DIFFERENCE SCHEMES

Let us write down finite difference schemes for nonlinear system (2.4) - (2.5),
(2.11) — (2.12). Let us introduce uniform grids in the domain

Wh = {(ziuziz))zh = Z.lhl) iy = OaNla N, = [Ll/hl];ziz = i2h2;

i2 = 0,Na, Ny = |La/ho]},

and the time grid: w, = {7; = jh., j =0,N,, N, = |T/h,|}.
We use the notation from [14]. The finite difference schemes for adaptive
grid equations are given in the form:

Tr = lel’\glzl + D2§§2Z2 + Qslu, (31)

Yr = D1g§121 + D2@\2222 + QSZ“: (32)
¢1U = Cl WQ (2¢1f1/2 + Wf_l/Q (Ugluflzl + 0-5u§2 (’u‘5122 + ’U,21§2))) )
Gou = Co W2 (2¢2f1/2 + wf2 (ug2ug222 + 0.5u21(u;lz2 + ’U/lez))) ,

$1 = lezlygz + 0-575;1 (yilzz +Yoz) — 0-5(372122 + wz132)ygl - mgzy?ﬁlv
¢2 = 0-5(563122 + lefz)ygz + mglyfzn - xfzzzygl - 0556292 (y7122 + y2172)7

f= () + (uz, ).

Z1 Z2

The following system of difference equations can be written for (2.4) — (2.5):

(Pu), = At + ¥g, (3.3)
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2 2
Au = % Z ((aaﬁufﬁ)za + (G’DKBU’ZQ)EQ) + Z (cau)ga, (3.4)
o,0=1 a=1

toa = ((@g,)? + (s ), @ f=12, F#a

k
12 = Q21 = —— (l'o To + Yo Yo ),

1/ Z1 Zo 21729

G =TrYs —YrZe, C2=Yrly —TrYs

U= Ty Yo =Ty Y - (3.5)

Schemes (3.1) — (3.5) approximate the initial problem (2.4) - (2.5), (2.11)

— (2.12) with the order O(h, + h? + h3). Positivity of the operators in equa-

tions (2.4)-(2.5), (2.11)-(2.12) guarantees the stability and the convergence of

difference schemes (3.1)—(3.5). This can be proved by the energy inequalities
method [14].

4. DOMAIN DECOMPOSITION METHOD

In order to solve nonlinear system (3.1)-(3.5) we use a domain decomposition
method in the form [8].

Let us break up the domain € into minimal sub-domains w;, ;, = {(24,, 23, ),
(Ziys Zist1)s (Ziy41,Zis+1), (Ziy+1,2is) } (see Fig. 2). In each of four points of
a sub-domain we define four values of grid functions:

_ (.00 (3) _ (,(0) (3) _(, (0 (3)
Liyio = (xilizv e ’wiu'z) Yirie = (yiliza - 7yi1i2)a Uiyin = (U’iliza - 7ui1i2)'

1 21 21 2
01,41 O izt O 41,7541

0 300 30 3

1 21 201 2
1, O, ;41,4

0 3,0 30 3

1 21 21 2
1,1 @ i1 01,41

0 310 3.0 3

Figure 2. Fragment of the grid wy,.

Let us consider the equation for the space coordinate z (3.1) :

r, = AT + Pu, (4.1)
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where operator A, has the form:
Ax.’IZ = Dl.’/lf\glzl + D2/$\7222.

In each grid point (z;,,2;,) it is represented by the sum of four operators:

3
Ayx = Z Al g, (4.2)
a=0

Operators A% o = 0,3, have the form:

AP w5, =05 Z Tl AP i, = 0500 2l + Y72l

aViy,in? ll i 11, 12)

APz, 5, = 0. 52 Yoo o AB gz o =05072P, + 152

« 11 i) l1 io 11 12)

(4.3)

Yrz=hi'"Diz,,, Y5z =h;"Dszx.,,
Y7z =—hi'Dizz,, Yyx=—hy'Dyzs,.
We repeat the same operations for the equation (3.2):
Yr = Ayﬂ"‘ Do,

Since the operator A, = A, so it has the form (4.2)—(4.3).
Let us introduce the following designations:

Vi in = (55?,)1'27 S 55?,)1'2)7
N:?)zz— 0.25(v 1(1 )7,2 + Uz(ll,)irl + Uz(l) Lis—1 T 711(13)71,;2)7
Nil)lz_ 0.25(v 1(11)12 + Uz(12) 1, T ”z(?)—1,i2+1 + ’Uz(?,)i2+1);
Ngl)u— 0.25(v 1(1 )lz ’Uz(i)i2+1 + ”1(13-1,1'24-1 + Ugll-)H,iz):
iia= 02500, + o0 + 00y 1 o )

Let us write down the difference scheme of domain decomposition for equation
(4.1) in the domain w;, ;,:

(&:\ilin $l1,lz)/h + Amu 12( ) +0. 253“1 lz( ) =& ailin’ (4'4)
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where
Azil,iz (l‘) = (_Agco)xihizv (R _Agcs)xihiz))

mmmmze@&unu,fmw»

B (x) = A2+ ADgM. 4 APl

21,02 T 11712 l1 12—

3 3
7,1 1,ia— +A3(U )5651)7171'2,

B (z) = A(l) (1) +A(2) (2) +A 23 1JFASEO)QE('O)

01,92 Tiy io Ty —1,is iy —1,i0+ i1,i2+1?

11,02

2 1
B( ) (.’If) = A(z2) 51,)12 + A( ) l1 12-‘1-1 + A(O) 1/11-1 io+1 + A( ) Ell-l,i27

B, (@) = AP, + AV, + AV AP

11,12 11,82 L1 41, i1,i2—1"

~ ~(0) ~(3) 0 3
¢1 U17i2: (@1 U“ 12""’¢1 Ui17i2) = (@{ ),,¢£ ))

Corresponding iterative algorithm of domain decomposition looks like this:

s+1 s+1

( L oiyyin — ;ihiz)/hT +Azi1,i2( T )+ 0. 25BI11 tz( ) = ¢ U’l1 i) (45)

where %ihiz:;ihiz-

Analogous difference scheme of domain decomposition and iterative process
can be written for the difference equation (3.2).

Let us consider the equation (3.3). Operator A can be represented in an
analogous to (4.2) way. Operators A(® | o = 0,3 have the following form:

A(O)uil,iz = M(O)ui17i2 +H(O)ui1,izv A(l)uihlé—l = M(l)uil,i2—1+H(1)ui1,i2—17

A(2)Ui1—1,i2—1 = M(Q)Ui1—1,i2—1 + H(Q)Uil—l,iz—la
Ay g4y = MPuy gy + Ty, g 4, (4.6)

2
@y =05 Z Aru, MWy =05(AFu+ A u),

2
@y =05 Z Aju, M®u=05A7u+Afu),

Afu=htagqu., — h;lc(a"'la)u("‘la),
Aju=—hytal e uz, +hte 1 ulte) a =12,

)

M@y = 0.5(h1_1a21u22 + h;lalguzl),
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MWy = 0.5(—hy  aSy D ul 1) + htalfWult),
H(Z)U = —0.5(h;1a21u31 + hflalgu@),

0% = 0505 22— 7l

z1 Z2

11)).

The difference scheme of domain decomposition for equation (3.3) in the
domain wj, ;, can be written as:

((Pivsie = (F)is,ia) for + iy ia (@ = 0) + 0.25Rs, iy (w) = TG, (4.7)

where
Ai i) = (=A@ w50 —ABuy ),
Riy iy (1) = <—R§??i2 (), ., =R, (),
R, () = AOuL, + AV, 4 AR 4 AT
Rl(ll)lz (u) = A(l)ug ,)z APy, 51) Lix T AG 513) 1,in+1 + A0y S?)Wru

R, (u) = A@ulD 4+ 4@y 4 40y z1+1 int1 +40 £1l)+1,i2’

21,02 11712 11 io+1
3 1
RZ(1 ,)i2 (U) A(B) 51 )lz + A(O) ( ) + A(l) 51-)‘1-1 i0—1 + A 51 7)12 1

The iterative algorithm for equation (33) can be formulated as:

s+1 s

((F )i i0 = (W)ir i) [+ Aig i (6 = &)+ 0.25R;, 10 (8) = 95, (48)

where 10”171'2:”1'171'2 .

The stability relative to initial data and also the convergence of the differ-
ence problem solution (4.4), (4.7) and the iterative algorithms (4.5), (4.8) were
investigated in linearized case. We proved that difference schemes (4.4) and
(4.7) were unconditionally stable relative to the initial data and converged.
Iterative methods (4.5) and (4.8) converge too. It seems to be impossible to
examine the full nonlinear system. But since all our operators are positive
definite, we can suppose that the stability and the convergence take place.
This was confirmed by numerical experiments. We considered a problem of
two-dimensional flow of incompressible viscous fluid as a test problem. A next
article will be devoted to the discussion of results of numerical experiments
carried out.

Author is indebted to V.N. Abrashin for attention to this work and valuable
remarks.
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DVIMATES SILUMOS LAIDUMO LYGTIES SPRENDIMAS
JUDANCIUOSE TINKLUOSE DAUGIAKOMPONENTINIU
ITERACINIU METODU

S. SYTOVA

Darbe nagrinéjamas daugiakomponentinis iteracinis metodas, kuriuo sprendziamas dvima-
tis Silumos laidumo uzdavinys. Naudojamas adaptyvus diskretusis tinklas ir skaic¢iavimo
sritis skaidoma i atskiras nepriklausomas dalis. Adaptyvusis tinklas konstruojamas kreivi-
nése koordinatése ir jis priklauso nuo uzdavinio sprendinio. Po transformacijos gaunama
netiesiniy skirtumuy lygciy sistema tenkinanti paraboliSkumo salyga. Lygtyje atsiranda
nariai su misriomis iSvestinémis, konvekcijos nariai ir Silumos Saltiniai. Gautoji lygciu sis-
tema sprendziama panaudojant srities skaidymo ir daugiakomponentiniy iteraciniy metody

kombinacija.



